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ABSTRACT 

A stock assessment of the main Hawaiian Islands Deep 7 bottomfish complex was conducted in 
2018. The assessment used a Bayesian surplus production model fit to bottomfish catch and 
effort data from commercial catch reports for fishing years 1949-2015. Recommendations from 
the Center of Independent Experts panel concerning the initial 2014 assessment update were 
addressed, including improved data filtering and standardization techniques, readdressing 
assumptions for prior values, the inclusion of a fishery-independent estimate of abundance, and 
exploration of a single-species assessment model for opakapaka (Pristipomoides filamentosus). 
The surplus production model for the Deep 7 complex was used to evaluate the risk of 
overfishing as a function of alternative annual reported catches from fishing years 2018 through 
2022. The projections included uncertainty in the posterior distribution of estimated bottomfish 
biomass in 2015 and population dynamics parameters estimated from the assessment model. The 
Deep 7 bottomfish stock complex in the Main Hawaiian Islands was categorized as not 
overfished (where overfished was defined as B/BMSY < 0.844) and not experiencing overfishing 
(where overfishing was defined as H/HMSY > 1) in 2015. The overfishing limit (OFL), defined as 
the future amount of reported catch that would yield a P*=50% probability of overfishing ranged 
from 558-604 thousand pounds depending on future year. The smallest Deep 7 future catch that 
would lead to a roughly P*=40% chance of overfishing was about 490 thousand pounds. The 
Bayesian surplus production model developed for opakapaka produced similar overall results to 
the model for the Deep 7 complex. Results were approximately proportional to the corresponding 
value in the Deep 7 bottomfish model with biomass over all years scaled by 68%, which was 
similar to the ratio of opakapaka to Deep 7 from two data sources: the estimate of opakapaka 
biomass to Deep 7 biomass from the fishery-independent survey (68%), and the overall 
proportion of total catch biomass of Deep 7 bottomfish comprised of opakapaka (67%). 
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1. INTRODUCTION 

The Hawaii bottomfish complex is a U.S. fishery management unit comprised of thirteen 
shallow- and deep-water species of snappers and jacks along with a single grouper species that 
inhabit waters of the Hawaiian Archipelago (Table 1). The ecological niches occupied by the 
shallow-water and deep-water components of the bottomfish complex differ (WPRFMC 2001). 
Deep-water bottomfish habitat in the Main Hawaiian Islands (MHI) includes waters of roughly 
100-400 m depth (Parke 2007), although some species shoal to mid-water depths to feed. The 
bottomfish complex, along with three seamount groundfish species, is managed as bottomfish 
management unit species under the Fishery Ecosystem Plan for the Hawaii Archipelago (FEP) 
developed by the Western Pacific Regional Fishery Management Council (WPRFMC 2009). The 
federal fisheries management regime includes three fishing zones: MHI Zone, and two zones in 
the Northwestern Hawaiian Islands, the Mau Zone and the Ho’omalu Zone (Figure 1). All 
bottomfish fishing currently takes place in the MHI zone due to the closure of the Northwestern 
Hawaiian Islands under Presidential Proclamation 80311. The Deep 7 bottomfish complex, the 
“Deep 7” (Table 1), comprises a subset of seven species from the bottomfish complex that have 
been a focus of fishery management measures including seasonal fishery closures and annual 
catch limits in the MHI since the larger bottomfish complex was determined to be experiencing 
overfishing on an archipelagic basis in 2005 (Moffitt et al. 2006). This benchmark stock 
assessment report assesses the Deep 7 bottomfish complex within the MHI zone.  

Hawaii bottomfish were targeted by native Hawaiians using deep handlines from canoes for 
hundreds of years before the advent of the modern fishery after World War II. The modern 
fishery employs similar handline gear, albeit with braided synthetic line, along with power reels 
to haul back gear, fish finders to locate schools of fish, and GPS units and other navigational aids 
to find fishing grounds. Although the efficiency of the modern fishery has likely improved 
through time (Moffitt et al. 2011), the current Hawaii bottomfish fishery still uses traditional 
deep handline capture methods for commercial and recreational harvest. Bottomfish restricted 
fishing areas (BRFAs) were imposed in Hawaii state waters in 1998 and revised in 2006 to 
conserve fishery resources. Current BRFAs were placed with the intent to cover consequential 
areas of bottomfish habitat. 

1.1. Previous Benchmark Stock Assessment in 2011 

The 2011 benchmark stock assessment of the MHI Deep 7 bottomfish complex, using data 
through fishing year 2010, improved upon earlier assessments (Brodziak et al. 2011). The 
baseline model was a Bayesian surplus production model. Estimates of unreported fishery catch 
were incorporated into the model to account for all sources of Deep 7 bottomfish catch. Greater 
exploration of catch per unit effort (CPUE) standardization methods were incorporated to 
address concerns about potential influence of model structure and the treatment of CPUE data on 
model results. The treatment of the assessment data was modified to improve the approximation 
of bottomfish population dynamics based on recommendations from the Western Pacific Stock 
Assessment Review [WPSAR] report (Stokes 2009) as well as new research information on the 

                                                 

 
1 http://www.papahanaumokuakea.gov/pdf/proclamation_8031.pdf 
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expected life span of opakapaka (Pristipomoides filamentosus), a key bottomfish species 
(Andrews et al. 2012). 

The WPSAR recommendations for immediate consideration in the 2011 benchmark stock 
assessment were (Stokes 2009, see pp. 17-18): 

1. Comprehensively explore MHI CPUE data and qualitative information in close 
collaboration with HDAR and fishers throughout the process. Develop credible CPUE 
standardization, including if appropriate alternative indices. 

2. Attempt to reconstruct noncommercial catch histories, possibly in the same collaborative 
process used for (1). 

3. Consider using meta-data to develop informative prior on Rmax. Develop prior for Binit 
in collaborative process above (1). 

4. Assess MHI as single stock to develop population benchmarks and management 
parameters. Ensure appropriate sensitivity testing to CPUE uncertainty. 

The 2011 benchmark stock assessment was developed to address each of the WPSAR review 
recommendations within the constraints of available data and the time required to generate the 
assessment for subsequent fishery management purposes. Details of these improvements can be 
found in the 2011 stock assessment report (Brodziak et al. 2011).  

It should be noted that the 2011 stock assessment was the first assessment to estimate the 
biomass and harvest rates of the set of Deep 7 bottomfish species rather than all species within 
the bottomfish complex. The change to assess only the Deep 7 complex was made because the 
Deep 7 species have similar life histories, distribution, and are the focus of management efforts 
by the WPRFMC, using annual catch limit regulation and closed seasons (WPRFMC 2007). In 
contrast, in the bottomfish assessments prior to 2011, several productive shallow-water 
bottomfish species were included in the set of species modeled. In this context, it was judged that 
modeling Deep 7 species as a biologically and ecologically related complex would provide a 
much better approximation of their population dynamics, would be more consistent with the 
fishery management approach being applied, and would provide a more accurate estimate of the 
probable levels of intrinsic growth rate and associated levels of sustainable harvest rate. The 
2011 stock assessment was also the first to assess the Deep 7 bottomfish in the MHI as a single 
unit stock without also considering stocks from the Northwestern Hawaiian Islands.  

1.2. Previous Stock Assessment Update in 2014 

The 2014 stock assessment update using data through fishing year 2013 used a similar analytical 
approach and assessment methodology as in the 2011 assessment, but incorporated a few 
changes (Brodziak et al. 2014). The 2014 update did not consider alternative fishing power 
scenarios for CPUE, but did include an improved CPUE standardization analysis from 1994 to 
2013, when Hawaii state commercial logbooks included consistent commercial marine license 
(CML) information to estimate fisher effects. The inclusion of the fisher effects improved the 
explanatory power of the CPUE standardization by over 200% since 1994 and was included in 
the updated production model analysis of the Deep 7 bottomfish complex. Overall, results of the 
2014 assessment were similar to the 2011 stock assessment and were not considered to be 
sensitive to the inclusion of improved CPUE standardization analyses. 
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The 2014 stock assessment was reviewed by a panel through the Center of Independent Experts 
(CIE). The panelists concluded that while the methods employed were generally appropriate, the 
quality of input data on catch and CPUE were questionable and thus did not recommend using 
the 2014 stock assessment results for management purposes despite the data having been used 
for all previous stock assessments (Neilson 2015). As a result, the Pacific Islands Fisheries 
Science Center (PIFSC) conducted a strict update of the 2011 stock assessment model using data 
through fishing year 2013, but following the same modeling procedures as for the 2011 
assessment. The results from this strict update were the most recent set of results used for 
management purposes. When necessary to avoid confusion between the 2014 assessment sent to 
CIE review and the 2014 assessment used for management, the model sent to review is 
referenced herein as the “initial 2014 assessment update” whereas the model used for 
management is referenced herein as the “2014 assessment update used for management”. To 
address the CIE panelists’ concern about data quality, PIFSC conducted a series of workshops 
with the bottomfish fishery community to improve quality of input data for stock assessment 
purposes (Yau 2018). The current (2018) benchmark assessment described herein incorporates 
the recommendations made by participants at the data workshops.  

1.3. Current Benchmark Stock Assessment in 2018 

The 2018 benchmark Deep 7 bottomfish stock assessment for the MHI used a similar assessment 
methodology as in the 2011 benchmark assessment and 2014 assessment update used for 
management. The baseline assessment model was a Bayesian surplus production model that used 
updated information on CPUE data along with improved filtering procedures and data analyses. 
In addition, an absolute biomass estimate based on an estimated scalar and relative biomass 
estimate from the fishery-independent survey in the MHI was used to scale biomass estimates 
within the model. Modifications to data and other improvements to model structure were 
incorporated within the 2018 assessment to address both immediate and long-term 
recommendations raised by the CIE review of the initial 2014 assessment update.  

Recommendation for immediate and long-term priorities from the CIE review of the initial 2014 
assessment update (Neilson 2015, pg. 8-9) included:  

Immediate 

1. Strengthen the program of fishery monitoring to ensure that the collection of catch and 
effort data is complete and accurate.  

2. Investigate the development of a catch rate series using known “highliners” that have 
a history of good logbook completion.  

3. Do a catch curve analysis using length frequency information from biological 
sampling and published length-age relationships for approximate guidance on the 
estimate of total mortality.  

4. Readdress assumptions made for prior values and other model assumptions. 

Longer term 
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1. Develop alternative indices of abundance using fishery-independent information.  

2. Develop a large-scale tagging program to provide independent estimates of harvest 
rates. 

3. Move towards single species assessment as the needed data become available to 
support the evolution of the assessment. 

All recommendations were considered, but only recommendations 1, 2, and 4 for immediate 
priorities, and recommendations 1 and 3 for long-term priorities were specifically addressed for 
this benchmark stock assessment.  

The first two immediate recommendations of the CIE panel were related to data inputs for the 
assessment. Extensive collaboration with Hawaii Division of Aquatic Resources (DAR), 
fishermen, and the Council were done over a series of five workshops to address these data-
specific recommendations (Yau, 2018). The results of these workshops were incorporated into 
updated catch and CPUE analyses for the assessment and are described in depth in sections 2.4 
and 2.5 of this document. The updated CPUE analyses also addressed the fifth ranking priority 
for bottomfish research as discussed among the broader bottomfish research community at 
coordination workshops in 2013 and 2015 (Yau and Oram 2016). Within the workshops, 
inclusion of an index of specific highliners was discussed. Ultimately, workshop participants 
decided against such an index over concerns that using only highliners would bias the CPUE 
index towards higher CPUE values, and that the resulting index would be less responsive to 
underlying changes in the abundance of bottomfish stocks given the expectation that highliners 
would be better able to maintain their catch rates. Additional details about workshop decisions 
were provided in the workshop report (Yau 2018).  

The fourth recommendation was incorporated through updated exploration of assumptions on 
prior values. These explorations resulted in greater support for the choice of parameters around 
the intrinsic growth rate and incorporation of life history parameters to inform estimates of 
natural mortality. New and not yet published data on unreported catch errors were also used for 
this stock assessment to adjust bounds for the prior on unreported catches. 

Longer-term recommendations by the review panel were incorporated where applicable and as 
time allowed. The first longer-term recommendation by the review panel was addressed within 
the stock assessment by explicitly incorporating into the model fitting process an absolute 
biomass estimate based on an estimated scalar and relative biomass estimate from the first year 
of the Bottomfish Fishery-Independent Survey in Hawaii. Details on how the estimate of 
absolute biomass was obtained were provided elsewhere (Ault et al., 2018), but the description 
of how the survey estimate was included in the model is provided in sections 2.6 and 3.1.1 of this 
report. The third longer-term recommendation, for single-species assessment, was also explored. 
Catch, CPUE, and survey data were revised to focus solely on opakapaka and incorporated into a 
second Bayesian surplus production model. Opakapaka was chosen as the species to use for 
single species modeling because it is numerically the most abundant species in the complex and 
has historically made up the greatest proportion of the catch of the Deep 7 complex (an average 
of 67% of total annual catch by weight during 1949-2015). Results for the baseline opakapaka-
only model were provided in this document and compared to those from the model of the Deep 7 
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bottomfish complex. A single species model for opakapaka using an alternative modelling 
framework to incorporate available weight data from DAR’s Fisher Reporting System (FRS) 
database was also explored in Stock Synthesis. However, the Stock Synthesis model required 
further testing of model assumptions and exploration of parameterization and data fitting and, 
therefore, was not available for the 2018 stock assessment.  

Other recommendations raised by the panel and further described in Neilson (2015) were not 
addressed given the current state of the data available and time constraints. These included the 
third immediate and second longer-term recommendations. Catch curve analyses using 
biological sampling data were not done because sampling was opportunistic and did not follow 
an experimental design; therefore, the data were not expected to be representative of the catch in 
the fishery. However, a new calculation of expected natural mortality rate was done using recent 
estimates of bottomfish longevity based on bomb radiocarbon ageing (Andrews et al. 2012). A 
PIFSC funded tagging program for bottomfish species was developed in 2007 and run through 
2015. As of 2013, approximately 8,500 fish were tagged, but recapture information was 
insufficient to estimate mortality rates, even for opakapaka for which most recaptures occurred 
(O’Malley et al., 2015). An updated analysis of the tagging data incorporating new tagging 
events and continued recaptures since the end of 2013, as well as historical tagging data from the 
State of Hawaii data has not been undertaken at this time.  

2. MATERIALS AND METHODS 

In this section, basic information on data sources used in the 2018 MHI Deep 7 bottomfish 
assessment is described, including on biological information (section 2.3), fishery catch (section 
2.4), fishery CPUE for standardization (section 2.5), and the fishery-independent survey (section 
2.6). 

2.1. Fishing Year 

The 2018 benchmark assessment used the same annual time period for reporting bottomfish 
catch as in the 2014 update and 2011 benchmark assessments. Catch and CPUE data were 
reported annually from July 1st of the previous year through June 30th of the current year, which 
is defined as the fishing year. This fishing year coincides with the State of Hawaii’s fiscal year 
and commercial marine license period but differs somewhat from the definition of fishing season 
in the bottomfish fishery management plan, which extends from September 1st of the previous 
year through August 31st of the current year. The fishing year beginning on July 1st corresponds 
to the annual biological cycle of the Deep 7 bottomfish complex which spawns in late spring to 
early summer (DeMartini 2016). Estimates of annual production biomass starting in July 
coincide with the settlement of juvenile bottomfish through midsummer (DeMartini et al. 1994). 
More importantly, the commercial fishery catch of Deep 7 bottomfish is typically highest during 
the winter months when there is strong market demand for red-colored fish during New Year 
holidays, and therefore is not operationally separated on a calendar year definition.  

2.2. Data sources 

Biological data, along with catch, CPUE, and survey biomass data were used to assess the MHI 
Deep 7 bottomfish complex stock. Catch and CPUE data were derived from Fisher Reporting 
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System (FRS) data collected by the State of Hawaii’s Division of Aquatic Resources (DAR). 
Survey biomass data were derived from data collected during the 2016 Bottomfish Fishery-
Independent Survey in Hawaii conducted by PIFSC in partnership with cooperative research 
fishers. Catch data were available from January 1, 1948 to June 30, 2016, but because catch data 
for 1948 covered only half the fishing year, catch data starting in fishing year 1949 were used in 
the assessment model. Catch and effort data were available from January 1, 1948 to June 30, 
2015, and were used in CPUE standardization. However, the standardized index used in the 
assessment model excluded fishing year 1948 and instead started in fishing year 1949, to align 
with years having complete catch data. Details on each individual data component are described 
in the sections below. 

2.3. Biological Data 

There is limited quantitative information on the life history parameters of the Deep 7 bottomfish. 
In particular, the early life stages and juvenile characteristics of Hawaii bottomfish are not yet 
well-described. However, surplus production models have relatively few parameters, and there 
are studies for Deep 7 bottomfish that can be used to infer values for surplus production model 
parameters, particularly the intrinsic growth rate. Musick (1999) provides ranges of values for 
the intrinsic growth rate based on estimates of maximum age, age at maturity, and growth. 
Similarly, there are studies on maximum age for Deep 7 bottomfish that can be used to infer a 
value for natural mortality, which although not used explicitly within the surplus production 
model itself, was used to calculate the biomass reference point from which stock status is based.  

Age determination for opakapaka, the most abundant Deep 7 species, has been challenging 
because their otoliths lack well-developed annual growth zones. Early growth has been well 
documented, and validated otolith growth rates were successfully developed for the first few 
years of growth using daily increments (Ralston and Miyamoto 1983; Radtke 1987). Previous 
research on the growth of opakapaka indicated substantial variation in growth and an estimated 
maximum age of 18 years (Ralston and Miyamoto 1983). However, more recent research on 
ageing of opakapaka based on bomb C-14 radiocarbon and lead radium dating of archival otolith 
samples showed that this species has a life span on the order of 40 years (Andrews et al. 2012) 
with a median age of maturity of about 3.5 years (Luers et al. 2017). This same study also found 
growth followed a von Bertalanffy growth curve with k = 0.242 (Andrews et al. 2012). Recent 
unpublished ageing research using bomb C-14 ageing of three other Deep 7 species indicates 
potential lifespans on the order of 53 years at 100 cm TL for hapuupuu (Hyporthodus quernus), 
with an age of maturity of 10 years; 54 years at 79 cm FL for onaga (Etelis coruscans); and 39 
years at 43 cm FL for gindai (Pristipomoides zonatus) (A. Andrews, PIFSC, pers. comm.). 
Overall, information on maximal observed ages of Deep 7 bottomfish in MHI, along with 
information on growth, is consistent with biological assumptions made in previous assessments 
that the intrinsic growth rate reflects low productivity stock, following the categories described 
by Musick (1999). 

Information on the expected natural mortality rate for the Deep 7 bottomfish complex for the 
current stock assessment differed from assumptions in previous assessments. In the initial 2014 
stock assessment update, a natural mortality rate of 0.25 was used based on Martinez-Andrade 
(2003) (Brodziak et al. 2011). In the 2011 benchmark stock assessment, a value of 0.3 for natural 
mortality was used for the Deep 7 bottomfish complex, although it was acknowledged that the 
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updated age information suggested a value closer to 0.1 (Brodziak et al. 2011). For the 2018 
benchmark stock assessment, a value more consistent with expected longevity was used, as 
suggested by reviewers from the previous assessment update (Neilson 2015). Then et al. (2015) 
found that the best empirical relationship for predicting natural mortality was a relationship 
between natural mortality (natM) and maximum age (tmax), natM = 4.899*tmax-0.916. Based on 
the maximum longevity from Andrews et al. (2012) of 43 years for opakapaka, natural mortality 
was 0.156, and this value was used for the purposes of determining a minimum stock size 
threshold, which is defined as BMSST = (1-natM)*BMSY for the bottomfish complex FEP, where 
BMSY is exploitable biomass required to produce maximum sustainable yield (MSY). 

2.4. Fishery Catch 

Catch data for the 2018 assessment included a combination of reported catch data as well as 
estimates of unreported catch. Unreported catch based on estimates of unreported to reported 
catch ratios were calculated prior to use within the assessment model. Reported catch and 
unreported catch were added together to determine total catch for Deep 7 bottomfish in the MHI. 
Details on each component of catch are provided in sections 2.4.1-2.4.3.  

2.4.1. Reported Catch of Deep 7 Bottomfish 

Reported fishery catch data used in the model were based on Deep 7 bottomfish catch data 
extracted from approximately 4.8 million DAR catch records submitted by fishers during fishing 
years 1949-2016 (K. Lowe, PIFSC, pers. comm.). A subset of the records was used to calculate 
reported Deep 7 bottomfish catch in weight, based on methods agreed upon at the data 
workshops (Yau 2018). First, catch data for Deep 7 bottomfish species (Table 1) were separated 
from all other species based on species codes reported within the catch dataset. There were two 
species codes for ehu (Etelis carbunculus) in the dataset (Moffitt et al. 2011), so both were used 
and combined into a single code. Second, catch data of Deep 7 bottomfish species were assigned 
to the MHI and the Northwestern Hawaiian Islands fishing zones based on the reported DAR 
fishing areas in the dataset (Figure 2). Some (1,547) records of Deep 7 bottomfish catch were 
reported in unknown or invalid fishing areas, and the minor catch amount (79,632 lbs) from 
these records was prorated to the MHI fishing zone based on the percentage of Deep 7 
bottomfish caught annually by species in known areas of the MHI compared to known areas of 
both the MHI and Northwestern Hawaiian Islands fishing zones. The final reported catch of 
Deep 7 bottomfish in the MHI was tabulated by fishing year and species during fishing years 
1949-2016 (Table 2). 
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2.4.2. Estimates of Unreported Bottomfish Catch 

Currently, there is no directed long-term monitoring program in place for quantifying the amount 
of unreported catches of bottomfish in the MHI. Therefore, estimates of unreported Deep 7 
bottomfish catch were based on estimated ratios of unreported to reported catch as summarized 
by Courtney and Brodziak (2011), which were used in previous assessments (Brodziak et al. 
2011; 2014). Unreported catch included catch from fishers without CMLs as well as non-
reported catch from CML holders and was included in the 2018 stock assessment to account for 
the effects of total fishery removals on the Deep 7 bottomfish complex. Based on the estimated 
ratios (U) of unreported to reported bottomfish catch in the MHI, unreported bottomfish catch 
(CU) was calculated from reported catch (CR) as CU = U*CR for each year. 

The same unreported catch ratios used in the base case scenario for the previous benchmark 
stock assessment were also used in base case scenario for the 2018 assessment (Table 3). As in 
the 2011 and 2014 assessments, U was set for each Deep 7 species by fishing year to account for 
annual variation in the species composition of the reported Deep 7 bottomfish catch (Brodziak et 
al. 2011; 2014). Original estimates of U were only available up to 2010 (Courtney and Brodziak 
2011). For the 2014 assessment, Brodziak et al. (2014) extended the species-specific estimates of 
U from 2010 through 2013, citing a recent survey to support the decision (Hospital and Beavers 
2013). Following previous logic, and because further official updated estimates were not 
available for comparison, 2010 estimates of U were assumed to represent the best available 
information, and were extended from 2010 through 2016. 

Estimates of the unreported catch ratio U (Table 3) indicated that unreported catch (Table 4) was 
slightly larger in magnitude than the reported commercial catch. Overall, the average unreported 
to reported catch ratio during 2011-2015 was U = 1.06 and the magnitude of the 2011-2015 
average unreported catch was approximately 285 thousand pounds. The survey of bottomfish 
fishers conducted by Hospital and Beavers (2013) reported on disposition of the catch, and their 
data indicated that the ratio of not sold to sold was 1.33 for commercial fishers.  

Uncertainty in estimates of unreported catch ratio was included as sensitivity analyses. Four 
alternative scenarios for unreported catch ratios were developed based on the available 
information presented in Courtney and Brodziak (2011) and based on recommendations from the 
review panel for the previous stock assessment update (Neilson 2015). Details on each of these 
alternative scenarios are provided in section 3.4. 

2.4.3. Estimates of Total Bottomfish Catch 

The total catch of Deep 7 bottomfish in the MHI was the sum of reported and unreported catch 
(Table 5). Uncertainty in the amount of unreported bottomfish catch was not directly estimable 
but was judged to be more substantial than that associated with reported commercial fishery 
catch. To account for uncertainty in estimates of unreported bottomfish catch, it was assumed 
that there was an independent error distribution for each annual estimate of unreported catch for 
fitting parameters of the production model used in the stock assessment. Therefore, the 
individual components of total catch were both used within the assessment model. The error 
distribution for underreported catch is described in further detail in section 3.1.2. 
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2.5. Standardized Fishery Catch Per Unit Effort 

Estimation of standardized commercial fishery CPUE for Deep 7 bottomfish was improved over 
methods used for previous stock assessments. The review panel from the last stock assessment 
concluded that although the initial 2014 stock assessment was improved compared to the 2011 
stock assessment, there were still concerns about the quality of the data used for CPUE indices of 
abundance (Neilson 2015). To address CIE reviews from the last assessment, as well as to 
improve the representativeness of the data used in the current stock assessment, PIFSC convened 
and completed five bottomfish data workshops with collaboration from the State of Hawaii, the 
fishing industry, and the Council. Discussions on commercial fishery CPUE for Deep 7 
bottomfish were extensive, and improved approaches for selecting representative data were 
developed. The data are briefly described in section 2.5.1. Details on selecting representative 
data for use in CPUE standardization are described in section 2.5.2, with further details available 
in Yau (2018), and details on CPUE standardization methods are described in section 2.5.3.  

2.5.1. Fishery Data for use in CPUE Analyses 

As in previous assessments, fisher reported data were used for standardizing CPUE indices of 
abundance. Fisher reported catch and effort data from fishing years 1948-2015 were used in this 
stock assessment to calculate standardized indices of abundance. In the initial 2014 assessment 
update, the time series of fishery reported data was separated into two periods for CPUE 
standardization, 1949-1993 and 1994-2013 (Brodziak et al. 2014). The two time periods were 
used because 1) fisher-specific information on license number was obtainable from 1994-2013, 
whereas prior to 1994, license numbers were reassigned among fishers each year and therefore 
not traceable through time; and 2) different catchabilities could be assumed between the two time 
periods as a way to account for the possible effects of changes in gear technology. The review 
panel considered including fisher-specific information in the CPUE standardization an 
improvement over the 2011 benchmark stock assessment, which did not account for the effects 
of individual fishers. However, fisher-specific information was not used in the CPUE 
standardization for the 2014 assessment update used for management due to general concerns 
from the panel about the data quality.  

The limitation of not being able to track individual fishers back through the entire time series 
was overcome for the 2018 assessment. With help from the State of Hawaii, yearly records of 
fisher reported data were cross-referenced with a separate and previously unused database of 
annual license holder names and license numbers. Names, when available, were then assigned to 
the corresponding license number for each year and added to the fisher reported dataset. This 
improvement added name information to approximately 3 million records, reflecting nearly all 
records back to 1977, and a majority of records in all but five years (1954-1958) between 1948-
1975 (Table 6). Note however, that fisher name information for records in 1976 could not be 
located. The fisher reported data with fisher name information included formed the base dataset 
from which further data filtering steps were applied. 

2.5.2. Fishery Data Filtering Steps for CPUE 

Improved data filtering procedures were discussed at the data workshops (Yau 2018), and an 
agreed upon approach was used for the 2018 assessment to select data for standardizing indices 
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of CPUE. In brief, Deep 7 bottomfish catch per effort data from 1948-2015 were summarized for 
directed deep-sea handline fishing in the MHI while accounting for potential multi-day trips. 
Multi-day trips were a large concern among reviewers from the last stock assessment. The efforts 
by workshop participants on improving and updating filtering procedures were significant and 
resulted in what the group considered the best available dataset for standardizing indices of 
CPUE. 

Procedures for preparing fisher reported data for CPUE are described below in four steps, as 
outlined in the data workshop report (Yau 2018). The four steps included: 1) selecting records 
targeting Deep 7 bottomfish, 2) analyzing records to account for multi-day trips, 3) selecting 
records representative of the fishery, and 4) preparing the data to incorporate factors affecting 
CPUE. Each step is described below, and each was applied sequentially to the data.  

2.5.2.1. Selecting targeted bottomfish records 

The first step in preparing fisher reported data for CPUE analysis was to remove any records not 
targeting Deep 7 bottomfish. The FRS database did not indicate what records targeted Deep 7 
bottomfish, so filtering procedures were used to select records considered to target Deep 7 
bottomfish within the spatial and temporal range of the assessment.  

Gear was identified as a critical determination for bottomfish fishing. Among records reporting 
Deep 7 bottomfish catch, 95% of the records and 98% of the fish weight summed over the 
records occurred with deep-sea handline gear. Fishers catching bottomfish primarily use and 
report this gear. Consequently, the 878,239 records from 1948-2015 that reported deep-sea 
handline gear were used exclusively for CPUE analysis, as in previous assessments. Given that 
this stock assessment was for the MHI population of Deep 7 bottomfish, only the 821,638 
records reporting deep-sea handline gear within the MHI (Figure 2) were used. The definition of 
MHI areas for this stock assessment differed slightly from previous stock assessments, with the 
greatest change in number records caused by moving the western-most boundary one grid east to 
align with the boundary of the Northwestern Hawaiian Islands’ Mau Zone (161°20’ W) as stated 
in the federal registry (54 FR 29907, September 6, 1988). Overall, the current definition used in 
the 2018 assessment for the MHI removed 159 records that would have been included had the 
previous definition been used, which indicates that the change in boundary has a minor impact 
on data used.  

After initial filtering procedures for gear and location, fisher reported data were next filtered to 
remove records not targeting Deep 7 bottomfish. Herein, the term ‘fishing event’ is used to 
describe a set of records for a unique commercial marine license (CML) number associated with 
a given unit of effort. That effort metric is a single day prior to October 2002, and a set of hours 
fished thereafter. Fishing events are referred to as ‘single-reporting days’ when referencing only 
data prior to October 2002. This terminology is used to avoid the use of the term ‘trip’ which is 
commonly defined by a fisher coming in and out of port. This definition of fishing event may 
result in overnight fishing being split into two fishing events for the purpose of CPUE 
calculation. Given the need for unique CML numbers, the 21,508 records with CML numbers 
that were zero were removed from further analyses. The definition of what constituted Deep 7 
bottomfish fishing was discussed at length at the data workshops (Yau 2018). In the past, a cutoff 
point (17%) based on the weight of Deep 7 bottomfish caught in a single-reporting day was used 
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to determine targeting of Deep 7 bottomfish (Brodziak et al. 2011). This removed all single-
reporting days with less than 17% pounds of Deep 7 bottomfish. An alternative definition of 
targeted Deep 7 bottomfish fishing was used for the 2018 stock assessment to avoid using a 
weight-based criterion that could remove fishing events targeting bottomfish that caught low 
percentages based on total weight.  

Filtering of non-bottomfish single-reporting days (and therefore defining bottomfish single-
reporting days) was mostly done for records that occurred prior to October 2002, when the fish 
reporting form was less detailed. After October 2002, fishers could report on the hours fished, 
start and end times, and were given the option to record catches of 0 pounds, whereas prior to 
October 2002 this was not possible. Our definition of a targeted bottomfish single-reporting day 
for records prior to October 2002 was twofold. First, single-reporting days not targeting Deep 7 
bottomfish were defined as single-reporting days that caught zero pounds of Deep 7 bottomfish 
and caught any Pelagic Management Unit Species (PMUS; WPRFMC 2009) listed in the DAR 
species code list, caught uku, or caught unknown species (species code=0). Workshop 
participants stated that it was possible to target Deep 7 bottomfish without catching any Deep 7, 
but that it would be unlikely that pelagic species would be caught if Deep 7 were truly targeted. 
Similarly, single-reporting days with catches of uku but without any catches of Deep 7 
bottomfish were believed to be reflective of fishing specifically targeting uku.  

Second, in waters around the southwestern shore of the Big Island (management grids 100-102, 
108, 120-122, and 128 in Figure 2), and in years prior to and including 1985, single-reporting 
days with weight of Deep 7 bottomfish of less than 50 pounds as well as with catches of PMUS 
were considered to not be targeting bottomfish. This definition was restricted to the southwestern 
shore of the Big Island due to the uniqueness of the fishery there. The ocean bathymetry of this 
region drops off steeply very quickly, and fishers who catch pelagic species (in particular tuna) 
can easily also catch Deep 7 bottomfish and vice versa. Consequently, Deep 7 bottomfish can be 
caught when targeting pelagic species. In addition, the gears commonly used to target tuna were 
not given their own unique gear codes until 1981, before which these gears were recorded as 
deep-sea handline. Hence, it was difficult to determine whether single-reporting days using deep-
sea handline off this region of the Big Island of Hawaii were actually targeting Deep 7 
bottomfish or pelagic species. The choice to use 1985 instead of 1981, when pelagic gear codes 
were implemented, was based primarily on an analysis showing that for waters around the 
southwestern shore of the Big Island the percentage of bottomfish by weight within single-
reporting days was more consistent and stable after 1985 (Figure 19 in Yau 2018), but also 
secondarily on the notion that it would take time for fishers to begin reporting the new gear 
codes consistently. Based on these two definitions of targeted bottomfish single-reporting days, 
84,290 single-reporting days were not considered to be targeting Deep 7 bottomfish, and all 
159,097 records from these single-reporting days were removed from further analysis.  

The Deep 7 bottomfish fishery was closed four times during 1948-2015. These seasonal closures 
began on April 16, 2008, July 6, 2009, April 20, 2010, and March 12, 2011 and extended to the 
end of the fishing season (August 31) for each year. Directed bottomfish fishing was not allowed 
during this time; therefore, an additional 4,179 records from the 1,886 fishing events that 
occurred when the Deep 7 bottomfish fishery was closed were removed, leaving a total of 
636,854 records remaining from fishing events considered to have targeted MHI Deep 7 
bottomfish.  
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2.5.2.2. Accounting for multi-day trips 

In the review of the previous stock assessment, the difficulty to determine whether catch reported 
on a single day represented catch from a single day or catch aggregated across many days was a 
major criticism (Neilson 2015). As such, the second step in preparing fisher reported data for 
CPUE analysis was to account for multi-day trips. In previous assessments, a cutoff of 1,500 
pounds of Deep 7 bottomfish was used to determine the upper limit of what could be caught 
within a single-reporting day, and to remove single-reporting days above this threshold. 
However, as acknowledged by CIE reviewers, use of this cutoff failed to remove any multi-day 
trips that caught less than 1,500 lbs of Deep 7 bottomfish (Haist 2015), possibly leading to biased 
CPUE values. To remedy potential bias in using a weight-based criterion for the 2018 
assessment, distance traveled was used as the primary determinant of whether single-reporting 
days occurred over multiple days, and a measure of how often an individual fishery reported was 
used as a secondary determinant. In both instances, the filtering step was done for data prior to 
October 2002. Details of each of these choices are described below. 

Distance travelled: 

Port landed and area fished should be reported for each record in the fisher reported data. 
Consequently, the distance travelled between the port and the center of the fishing area was used 
to determine whether a single-reporting day likely occurred over one or multiple days. The 
distance travelled between each port and area was determined based on an independent key table 
constructed for a separate and ongoing analysis of the fisher reported data (J. Ault and S. Smith, 
University of Miami, pers. comm.). To reduce the number of distances required to be calculated, 
all of which were done by hand, the key table provided distances from a common port rather than 
distances from all possible ports. The common port was centrally located among a group of ports 
in a similar geographic area on each island. In addition to saving time, a common port also 
allowed for the potential of landing a vessel there and driving to neighboring ports to sell the 
catch. Distances were calculated based on expected travel paths from the common port to the 
center of the fishing area while accounting for land barriers. Some records did not have a valid 
port recorded so a common port could not be assigned, while other records’ port-area 
combinations were not calculated in the key table. Overall, only 5,819 of the 513,146 records 
prior to October 2002 could not be assigned a valid distance.  

During initial analyses, it was noticed that a few single-reporting days reported multiple areas 
fished and multiple ports landed. Fishing in multiple areas and landing in multiple ports on a 
single-reporting day is possible, but for some combinations of areas and ports that are distant 
from one another this is highly improbable, and most likely represents records from multiple 
single-reporting days recorded together or represents a database error. To initially account for 
multi-day trips, information on the number and location of ports and areas recorded on a single-
reporting day were first used to refine the records into separate single-reporting days where 
applicable. The criteria for splitting records within a single-reporting day differed based on the 
number of areas and common ports visited. There were multiple areas and a maximum of 2 
common ports visited within any one single-reporting day. For single-reporting days with one 
area and one common port reported (1-1 single-reporting days), no further refinement was used. 
For single-reporting days with one area and two common ports reported (1-2 single-reporting 
days), records were separated into multiple single-reporting days only when the common ports 
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were on two separate and nearby islands. If the common ports were on the same island, the 
single-reporting days were considered to accurately be a single-reporting day and were left 
unchanged. Similarly, if the common ports were at least two islands away (either Big Island-
Oahu, or Kauai-Maui Nui), it was assumed to be a database error, and therefore the single-
reporting day was left unchanged. Single-reporting days with multiple areas and a single 
common port (2+-1 single-reporting days) were also considered accurate, and the distance for the 
single-reporting day was assigned as the greatest distance among each port-area distance. For 
single-reporting days with multiple areas and two common ports (2+-2 single-reporting days), 
nearly all single-reporting days had areas uniquely associated with one common port or the other 
common port. Therefore, common port was used as a unique identifier to further separate among 
single-reporting days, and the distance assigned followed the same approach as for 2+-1 single-
reporting days. Accounting for multiple areas and common ports recorded for a single-reporting 
day added 57 new single-reporting days to the dataset. 

Once distance was assigned to each single-reporting day based on the common ports and fishing 
areas visited, an expected number of days was assigned to each single-reporting day based on a 
selected distance cut-off value. The cut-off value was selected based on the frequency of 
distances in 10-year time blocks (Figure 21 in Yau 2018) and from conversations with 
participants at the data workshops. Based on these discussions, it was expected that the cutoff in 
the earlier part of the time series would be smaller than that in the later part of the time series due 
to the vessels participating in the fishery early on being larger and slower. However, a cutoff of 
30 nm was applied to all years as it indicated a clear break in the number of single-reporting days 
occurring in years after 1960. The 30nm cutoff was also inclusive of possible single-reporting 
days in the 15nm-30nm range for years prior to 1960 where a clear breakpoint was slightly less 
obvious. Each single-reporting day was assumed to last a day for every multiple of its cutoff. 
Thus, a distance between 0-30 nm would reflect a single-reporting with one day of effort, 30.1-
60 nm a single-reporting day with two days of effort, and so on. Based on this criterion, a total of 
23,258 single-reporting days were adjusted to have more than one day of effort, with the longest 
timeframe being 11 days. Single-reporting days without distances were assumed to have one day 
of effort.  

Timing of reporting: 

The timing of reporting was also explored as a way to account for single reporting days 
occurring over multiple days. Prior to October 2002, the number of records that were reported on 
the first and last day of a month was higher than the number of records reported on other days 
(Figure 20 in Yau 2018), which suggested that some of the single-reporting days were likely 
reported together as monthly reports rather than as daily reports. As there was no way to 
determine the number of days fished that made up a monthly report, all 4,097 records from the 
646 license-year combinations that only ever reported on the first or last day of a month in a year 
were removed from analyses. Although removing records from fishers that only ever reported on 
the first or last day of a month in a year may remove a valid single-reporting day that occurred 
during this time, such instances were expected to be inconsequential for CPUE calculation.  
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2.5.2.3. Selecting records that accurately represent trends in the fishery 

The third step in preparing fisher reported data for CPUE analysis was to filter out records 
considered to be unrepresentative of the Deep 7 bottomfish fishery. Many options on how to do 
this were described in detail in the workshop report (Yau 2018). Ultimately, workshop 
participants agreed on two simple criteria: to filter out records from fishers who never reported 
catching a Deep 7 bottomfish, and to filter out records from fishers on days where they were 
participating in the fishery-independent bottomfish survey activities. The former criteria 
removed 7,851 records from 1,482 fishers who never reported a Deep 7 bottomfish, and the latter 
removed 97 records from fishers on days that they participated in the fishery-independent 
bottomfish survey. The logic for removing records from individuals who never reported Deep 7 
bottomfish was that such individuals were unlikely targeting bottomfish even though they were 
fishing deep-sea handline gear. The logic for removing records from the fishery-independent 
survey was that the fishing method would be functionally different for the survey than for the 
fishery and therefore unrepresentative. In what fishers described as rare, some fishers 
participated in the survey but also fished on their own that same day. Records that were part of 
the survey were indistinguishable from other records fished on the same day; therefore, all 
records from days where the fisher participated in the survey were removed. 

2.5.2.4. Preparing data to incorporate variables affecting CPUE  

The final step in preparing the fisher reported data for CPUE analysis was to incorporate 
additional variables needed for the standardization and to prepare the data for CPUE analysis. 
Details on each step are described below.  

Additional variables affecting CPUE: 

Participants at the data workshops identified several variables they considered to influence 
bottomfish catch rates. Given time constraints, the top three were added to the dataset for use in 
the CPUE standardization process. They were: i) a measure of fisher experience, ii) the pounds 
of uku caught, and iii) wind speed and direction. The entire list of variables used in the 
standardization, including the three variables here, is stated in section 2.5.3.1. Other variables 
that workshop participants viewed as important (Table 8 in Yau 2018) were not incorporated into 
CPUE standardization due to time constraints but may be explored in future assessments. 

Fisher experience was calculated for each fishing event as the cumulative number of fishing 
events taken previously. Including fisher experience was possible because individual fishers 
could be tracked from 1948-2015. Participants discussed and acknowledged that such a measure 
could not account for fishing done as crew members or experience gained through generational 
knowledge passed down by elders. Nonetheless, cumulative number of fishing events remained a 
way to account for differences between experienced and inexperienced fishers.  

Pounds of uku caught in each fishing event was included as a variable due to gear competition 
with Deep 7 bottomfish and the potential for fishers targeting Deep 7 bottomfish to switch to uku 
(and therefore away from Deep 7 bottomfish) when uku were present. Uku can be found in large 
numbers and although are not always targeted, can be valuable when encountered, and therefore 
would alter the catch rates of Deep 7 bottomfish.  
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Wind data at scales similar to the fisher reported data were available starting July 9, 1987, yet 
had some gaps in coverage. Average wind speed and directional data on a daily basis for a 0.25 
degree spatial grid were downloaded from https://www.ncdc.noaa.gov/data-access/marineocean-
data/blended-global/blended-sea-winds on August 15, 2016. Midpoints of management grids 
calculated from the previous analysis from which grid to port distances were obtained (J. Ault, 
University of Miami, pers. comm.) were used and merged to each record in the CPUE dataset. 
Each record was then assigned the nearest wind data point for that day based on the location of 
the management grid where fishing took place. A total of 294,771 records corresponding to 
99,005 fishing events were assigned wind data for 1988-2015 out of the 339,521 possible records 
and 115,074 fishing events starting on or after July 9, 1987. Fishing events without valid wind 
data were excluded when generating the final dataset.  

Preparing data for standardization 

The filtered record-based dataset for use in the CPUE standardization included 624,809 records 
from the 209,703 fishing events considered most representative of the Deep 7 bottomfish fishery. 
This dataset was a record-based dataset, which included fishing events containing records 
reporting different areas or separate hours. For CPUE standardization, only a single value of each 
dependent and independent variable can be included in the analysis. Consequently, the record-
based dataset was summarized into an event-based dataset so that each data point used in the 
analysis contained information on a single unique fishing event. 

Starting in October 2002, fishing events with multiple values of hours reported were divided into 
multiple fishing events so that each had only a single corresponding value of effort in hours. This 
was only possible for fishing events that occurred since October 2002 because effort for each 
record could be reported. A total of 782 fishing events that occurred since October 2002 had 
multiple hour values reported. Within each reported area for fishing events with multiple values 
of effort, records that had the same reported hours were treated as a single fishing event. Effort 
was equal to the reported value of hours, and catch was equal to the sum of reported weight of 
Deep 7 bottomfish. Records within each area that had different hours reported were treated as 
separate fishing events. This approach assumed that when the same effort was reported across 
many records, the value represented total hours fished on a fishing event, whereas when multiple 
hour values were reported, the values represented individual fishing events that occurred in either 
multiple parts of the same fishing area or in separate areas altogether. Although this assumption 
combines separate fishing events with the same reported effort, such cases could not be known 
for certain, so this approach at least accounted for unique fishing events with different effort 
values. Using this approach added 845 fishing events to the dataset. After accounting for fishing 
events with multiple hour values reported, there were 97 fishing events with all records having 
zero hours recorded. Because CPUE is undefined when the denominator is zero, these fishing 
events were removed from further analysis.  

Multiple areas within a single fishing event were also reported for 1,877 fishing events, however, 
area-specific effort information for separating these into unique fishing events was not available. 
Consequently, the area with the greatest amount of Deep 7 bottomfish by weight was assigned to 
the fishing event for use in the standardization. In cases where the weight of Deep 7 bottomfish 
was the same across multiple areas, the smaller numbered management grid was selected, 
reflecting a general preference towards management grids nearer to land (Figure 2). This choice 
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was somewhat arbitrary, but given the few occurrences (137 fishing events), the effect on the 
standardization was expected to be negligible. Since wind data were linked to the area reported, 
the wind data corresponding to the area selected for the fishing event was chosen when multiple 
areas were reported.  

Once the dataset was summarized into individual fishing events, CPUE for each fishing event 
was calculated as the total weight in pounds of Deep 7 bottomfish caught across all records 
within a fishing event, divided by the unit of effort. For fishing events that occurred prior to 
October 2002, effort was number of days, while for fishing events that occurred since October 
2002, effort was the number of hours. After accounting for multiple values of independent 
variables so that each fishing event had only one value for any independent variable and 
removing fishing events without valid wind data, the final filtered event-based dataset for use in 
the CPUE standardization consisted of 208,641 data points.  

2.5.3. CPUE Standardization 

2.5.3.1. Model Selection 

Deep 7 bottomfish CPUE was standardized using generalized linear and generalized linear mixed 
models (McCulloch et al. 2008). It was acknowledged during the data workshops that catching 
zero pounds of Deep 7 bottomfish was possible when targeting Deep 7 bottomfish. 
Consequently, zero catches of Deep 7 bottomfish were included in CPUE standardization for the 
base case scenario for this assessment, which differed from choices made for CPUE data during 
the last two assessments. For this assessment, 17% of the total data points had zero catches of 
Deep 7 bottomfish. There are numerous ways to deal with zero catches when standardizing 
CPUE (Maunder and Punt 2004). A delta-lognormal approach was used in this assessment 
wherein CPUE was modeled as the product of two processes: a Bernoulli process modeling the 
probability of positive catches, and a positive process modeling the distribution of CPUE given a 
positive catch, which was assumed lognormal. The response variable for the Bernoulli process 
was a binomial variable that was added to the dataset, indicating whether a Deep 7 bottomfish 
was captured (1 = captured, 0 = not captured). The relationship between the response variable 
and the predictor variables was modeled as a Binomial distribution using a logit link function. 
The response variable for the positive process, hereafter referred to as the lognormal process, 
was the natural logarithm of CPUE from positive catches of Deep 7 bottomfish. A Poisson and 
negative binomial distribution were also considered in place of the delta-lognormal as alternative 
ways to include zero catches, but were ultimately not used. Models using the Poisson distribution 
had overdispersion constants of greater than 470, where values of greater than zero suggest 
overdispersion (Cameron and Trivedi 1990).  Models using the negative binomial distribution 
had convergence issues. 

Model selection techniques were used for each of the Bernoulli and lognormal processes to select 
from the suite of possible predictors those predictors that most improved model fit. Predictor 
variables for model selection included a mix of categorical and continuous variables, as well as 
fixed and random effects. Each variable was considered to have some effect on bottomfish 
CPUE that varied on an annual basis because of changes in the distribution of fish or the spatial 
pattern and effectiveness of fishing effort. Categorical variables included fishing year, 
management area, island region, quarter, cardinal and ordinal wind directions, and individual 
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fisher as first-order variables, and area-fishing year and area-quarter as second-order interactions. 
Island region was defined as Big Island for management areas 100 to 299, Maui-Nui for 
management areas 300-399, Oahu for management areas 400 to 499, and Kauai-Niihau for 
management areas 500 and above. Quarter was separated along the definition of fishing year 
with July to September as quarter 1, October to December as quarter 2, January to March as 
quarter 3, and April to June as quarter 4. Continuous variables included a measure of the 
cumulative experience of an individual fisher, the pounds of uku caught, and the wind speed. 
Preliminary examination of the continuous variables showed some non-linearity in wind speed 
with positive CPUE; therefore, an additional term for the square of wind speed was included to 
allow a quadratic effect of wind speed. All variables were modeled as fixed effects except for 
fisher, which was modeled as a random effect.  

Selection among CPUE standardization models was performed using Akaike’s information 
criterion (AIC = 2*number of parameters – 2*ln(likelihood evaluated at its maximum)) to judge 
the relative goodness of fit (Burnham and Anderson 2002). Model selection was done using a 
forward-selection process with a threshold of 0.05% of the previous model’s AIC. Thus, if the 
improvement in AIC of a model after adding a new predictor was greater than 0.05% of the 
previous model’s AIC, the added predictor was considered significant, and kept for the best-
fitting model. A percentage based threshold was used as opposed to a constant value due to large 
likelihood values caused by the high number of data points, following the suggestion by 
Maunder and Punt (2004). The significance of the random effect of fisher was tested first, and 
model selection using fixed effect terms was done thereafter. Fishing year was required for the 
index, so year was retained first among fixed effect terms in model selection regardless of AIC 
score. Model selection was done using maximum likelihood for all models. Estimation was done 
for generalized linear mixed models using restricted maximum likelihood once the best-fit model 
was determined. Restricted maximum likelihood accounts for degrees of freedom used in 
estimating fixed effects and estimates variance components of the random effects without 
influence from fixed-effect terms (Harville 1977; McCulloch et al. 2008). Statistical modeling 
was done with the lme4 package version 3.2 (Bates et al. 2015) within the R software package 
version 3.2 (R Core Team 2016). 

As described previously in the data filtering section, CPUE was calculated with a different 
measure of fishing effort (single reporting days versus hours) in two different time periods. The 
time periods ranged from 1948 to September 30, 2002, and from October 1, 2002-2015, which 
corresponded to fishing years 1948-2003 and 2003-2015. This separation followed the change in 
reporting practices by the state of Hawaii starting in October 2002. Model selection was 
therefore done separately for data in each time period, resulting in two standardized indices of 
abundance. We describe the model selection for each index below.  

Early time period: Fishing years 1948-2003 

Not all predictors could be included in model selection for the early time period (Table 7). 
Single-reporting days in the early time period with catches of uku but no catches of Deep 7 
bottomfish were previously excluded as part of the data filtering steps (see section 2.5.2.1). 
Consequently, pounds of uku caught was perfectly separated by the value of the Bernoulli 
response variable and therefore not included as a variable in model selection for the Bernoulli 
process. Pounds of uku was however included in model selection of the lognormal process. Wind 
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data (wind speed and direction) were available starting in 1987, which covered only a portion of 
the early time period. Consequently, wind information was not included as a variable for model 
selection for either the Bernoulli or lognormal processes for the early time period. Lastly, model 
selection for ‘fisher’ was problematic for the Bernoulli process. A mix of convergence and 
memory errors were encountered when fitting using the fisher predictor. Fisher was therefore 
excluded as a variable for model selection for the Bernoulli process, but was retained as a 
variable for model selection for the lognormal process.  

The best-fit model for the Bernoulli process included fishing year, area, quarter, an interaction 
term for area and quarter, and cumulative experience (Table 8). The best-fit model for the 
Bernoulli process reduced deviance by 17% from the null model (intercept only) and 11% from 
the year effect only model. The best-fit model for the lognormal process included fisher, as well 
as fishing year, area, quarter, pounds of uku, cumulative experience, and an interaction term for 
area and quarter (Table 8). The best-fit model for the lognormal process reduced deviance by 
16% from the null model (intercept only), 2.5% from the model with only fisher, and only 2.2% 
from the model with only year and fisher. Including fisher in the model reduced total model 
deviance the most among predictors.  

Recent time period: Fishing years 2003-2015 

Not all predictors were included in model selection for the recent time period. Fisher was not 
included in model selection for the Bernoulli process in the recent time period due to 
convergence and memory errors. Wind data were available and were included in model 
selection. The best-fit model for the Bernoulli process included fishing year, area, quarter, wind 
speed, an interaction term for area and quarter, and pounds of uku (Table 8). The best-fit model 
for the Bernoulli process reduced deviance by 24% from the null model (intercept only) and 23% 
from a model with fishing year only. The best-fit model for the lognormal process included 
fisher, fishing year, area, quarter, pounds of uku, cumulative experience, and the linear term for 
wind speed. No interaction terms were selected, nor was the quadratic term for wind speed. The 
best-fit model for the lognormal process reduced deviance by 21% from the null model (intercept 
only), 5% from the model with only fisher, and 4.4% from the model with only year and fisher. 
The change in AIC, log-likelihood, and degrees of freedom for each predictor from both 
processes are provided in Table 8. As was the case in the early time period for the lognormal 
process, including fisher in the model reduced model deviance the most among predictors.  

2.5.3.2. Model Diagnostics 

Regression diagnostics were used to qualitatively check model assumptions. Model fit was 
assessed through visual comparison of residuals plotted against predicted values of the response 
variable and against values of the predictor variables. Pearson residuals were used for all models 
for the lognormal process. Quantile residuals were used for all models for the Bernoulli process 
as recommended by Dunn and Smythe (1996). Plots of the quantiles of the standardized residuals 
to the quantiles of a standard normal distribution were also used to assess assumptions of 
normality for models for the lognormal process.  

Diagnostic residual plots and summary output of best-fit models show some deviation from 
assumptions about heteroscedasticity in models for the Bernoulli process but in general, models 
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were appropriate. For the early time period, the histogram of quantile residuals indicated that 
distributional assumptions were not violated, and the plot of quantile residuals to the response 
variable showed some presence of heteroscedasticity (Figure 3.1). The smaller range in residuals 
at lower values of the response variable was attributed to fewer data points at these low 
probabilities. Plots of residuals against predictor variables indicated no patterning with individual 
variables. For the later time period, the histogram of quantile residuals did not indicate a 
violation of normality. With the exception of some patterning in pounds of uku, plots of quantile 
residuals against predictor variables showed no patterning (Figure 3.2). Altogether the diagnostic 
plots were not considered indicative of serious violations in model assumptions for the Bernoulli 
process.  

Initial diagnostics of models for the lognormal process indicated skewed residuals for the 
predictors cumulative experience and pounds of uku, which was the reason the natural logarithm 
and square-root transformation on these parameters were used for both processes. The square 
root transformation was used for uku because there were instances with zero uku pounds. 
Residual plots with the transformed variables improved the patterning of the Pearson residuals 
for both overall predictions and parameter-specific residuals. These are shown for the early time 
period (Figure 3.3) and for the recent time period (Figure 3.4). There remained some skewness 
towards smaller response values as evident by the quantile-quantile plot (Figures 3.3 and 3.4). A 
Gamma distribution with log link was explored to determine if it would improve the residual 
patterns and add greater probability to the lower tails; however, the Gamma model was unable to 
converge with fisher as a random effect. Comparison between a fixed-effect only model (with 
fisher removed) under the Gamma distribution with an identical model under the lognormal 
distribution showed no improvement in residual patterns. Therefore, the lognormal distribution 
was kept for the best-fit models. 

2.5.3.3. Index Calculation 

Once the set of factors that minimized AIC were selected and diagnostics indicated model 
assumptions were not violated, an index of relative abundance was generated using the best-fit 
models for each time period. Predicted values of the response variable from each model were 
calculated using the predict function in R. The predicted values from the positive process were 
multiplied by the exponential of one-half the residual variance to correct for bias when back-
transforming from ln(CPUE) to CPUE. The index IT was then calculated as the product of the 
mean probability of catching a Deep 7 bottomfish in year T and the mean CPUE in year T 
calculated from positive catches of Deep 7 bottomfish. The variance of the index in year T was 
calculated as the variance of the product of two independent random variables, the Bernoulli (ΔT) 
and lognormal process (φT), following Brodziak and Walsh (2013) 

(1)  Var(IT) = Var(ΔT)Var(φT) + Var(ΔT)E[φT]2 + Var(φT)E[ΔT]2.  

The variance of the index was then divided by the sample size in each year for calculating the 
CVs around the mean index, which were then used in the calculation of relative CV for the stock 
assessment model. The yearly index and relative CV values are provided in Tables 9.1 and 9.2 
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2.6. Fishery-independent Survey 

A new data source was used for this benchmark stock assessment. The PIFSC has developed a 
Bottomfish Fishery-Independent Survey in Hawaii to provide an independent estimate of Deep 7 
biomass and worked with cooperative research fishers to conduct the survey (Richards et al. 
2016). The survey consisted of two gears, research fishing and underwater stereo video cameras. 
Research fishing utilized fishing gears and techniques similar to those used in the Deep 7 fishery, 
so selectivity was expected to be similar. Fishing effort was identical among all fishing events, 
and the locations for fishing were pre-determined based on a stratified random sampling design. 
Underwater stereo video cameras were used to complement research fishing, and on occasion 
were used to focus sampling in sensitive areas and provide estimates on fish biomass that may be 
present in the water but not caught during research fishing. The first operational survey was 
conducted in the spring and fall of calendar year 2016, and covered the entirety of the MHI 
including inside BRFAs. An estimate for total biomass for Deep 7 bottomfish was calculated as 
the product of a relative biomass estimate and a scaling factor as 10.15 million pounds with a 
standard error of 1.96 million pounds. See Richards et al. (2016) for complete details on the 
fishery-independent survey and Ault et al. (2018) for the methods used to calculate the overall 
absolute biomass estimate. 

3. ASSESSMENT MODEL 

In this section, the production model assumptions and structure that were used to estimate 
biomass and fishing mortality for the Deep 7 bottomfish stock assessment for the MHI through 
2015 are described. The same general stock assessment modeling approach as used in the 2011 
benchmark assessment was used in the 2018 assessment. In particular, a Bayesian generalized 
surplus production model was fit to standardized CPUE time series in fishing years 1949-2015, 
using catch data from 1949-2016. The 2018 assessment model differed from the 2011 model 
structurally in that the 2018 assessment model also fit to a fishery-independent biomass estimate 
and included two time periods for the CPUE observation fitting. Both CPUE time periods were 
fit separately with different fishery catchabilities and observation error variances. The 2018 
assessment also utilized new information on priors and error in unreported catches. A summary 
of assumed priors is found in Table 10.  

3.1. Biomass Dynamics Model 

The biomass dynamics model for the Deep 7 bottomfish complex in the MHI was formulated as 
a Bayesian state-space production model. It included explicit observation and process error terms 
that have been commonly used for fitting production models with relative abundance indices 
(Meyer and Millar 1999; McAllister et al. 2001; Punt 2003; Brodziak and Ishimura 2011). The 
exploitable biomass time series comprised the unobserved state variables. These annual 
biomasses were estimated by fitting model predictions to the observed relative abundance indices 
(i.e., CPUE), catches, and independent survey biomass estimate using observation error 
likelihood functions and prior distributions for the model parameters (θ). In particular, the 
observation error likelihood measured the discrepancy between observed and predicted CPUE, as 
well as between observed and predicted relative biomass, while the prior distributions 
represented the relative degree of belief about the probable values of model parameters. 
Assumption of this model included that production followed a specified functional form, the 
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assessment applied to exploitable individuals, all exploitable individuals were mature and 
equally vulnerable to fishing, and that biomass was proportional to CPUE. 

The process dynamics represented the temporal fluctuations in exploitable bottomfish biomass 
due to density-dependent population processes (e.g., growth) and fishery catches. The 
generalized production was a power function model with an annual time step. Under this 3-
parameter model, exploitable biomass at the start of time period T (BT) depended only on the 
previous time period’s exploitable biomass (BT-1), total catch (CT-1), intrinsic growth rate (R), 
carrying capacity (K), and production shape parameter (M) 
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The production shape parameter M determined where surplus production peaked as biomass 
varied as a fraction of carrying capacity (Figure 4). If M was less than unity (0 < M < 1), then 
surplus production peaked when biomass was below ½ of K (i.e., a right-skewed production 
curve). If M was greater than unity (M > 1), then biomass production was highest when biomass 
was above ½ of K (i.e., a left-skewed production curve). If M was identically unity (M = 1), then 
the production model was identical to a discrete-time Schaefer production model where 
maximum surplus production occurred when biomass was equal to ½ of K. In practice, estimates 
of M for Deep 7 biomass production in the MHI tended to be around M = 2 (Brodziak et al. 
2011; 2014).  

For computations, the production model in equation 2 was expressed in terms of the proportion 
(P) of carrying capacity in time period T (i.e., setting PT = BT/K) to improve the efficiency of the 
Markov Chain Monte Carlo (MCMC) algorithm to estimate parameters (e.g., Meyer and Millar 
1999). Given this, the process dynamics for the temporal changes in the proportion of carrying 
capacity were

The values of exploitable biomass and harvest rate that maximized biomass production were 
relevant as biological reference points for fishery management and for estimating the MSY of the 
Deep 7 Hawaii bottomfish complex. Based on equation 3, the exploitable biomass that was 
required to produce MSY (BMSY) was 

(3) 𝑃𝑃𝑇𝑇 = 𝑃𝑃𝑇𝑇−1 + 𝑅𝑅𝑃𝑃𝑇𝑇−1�1− 𝑃𝑃𝑇𝑇−1
𝑀𝑀� − 𝐶𝐶𝑇𝑇−1

𝐾𝐾
 

(4) 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐾𝐾(𝑀𝑀 + 1)
−1
𝑀𝑀 , 

while the corresponding harvest rate that was required to produce MSY (HMSY) was 

(5) 𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑅𝑅 �1 − 1
𝑀𝑀+1

�. 

The estimate of MSY for the Deep 7 Hawaii bottomfish complex was  

(6) 𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑅𝑅 �1 − 1
𝑀𝑀+1

�𝐾𝐾(𝑀𝑀 + 1)
−1
𝑀𝑀 . 

As a result, the use of the production model led to direct estimates of MSY-based biological 
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reference points for determining stock status of Deep 7 Hawaii bottomfish (WPRFMC, 2009). 
Note that the parameterization of the production function imposes a lower limit on the ratio of 
BMSY/K, which approaches 1/e ≈ 0.368 as M approaches 0. 

Process error was added to the deterministic process dynamics (Eq. 3). The process error model 
related the dynamics of exploitable biomass to natural variability in demographic and 
environmental processes affecting the bottomfish complex. The deterministic process dynamics 
were subject to natural variation due to fluctuations in life history parameters, trophic 
interactions, environmental conditions, and other factors. In this case, the process error 
represented the joint effects of many random multiplicative events which combined to form a 
multiplicative lognormal process under the Central Limit Theorem. As a result, the process error 
terms were set to be independent and lognormally distributed random variables.  

Given the process errors, the state equations defined the stochastic process dynamics by relating 
the unobserved biomass states to the observed catches and the estimated population dynamics 
parameters. Given the multiplicative lognormal process errors, the state equations for the initial 
time period (T = 1) and subsequent periods (T > 1) were  

(7) 𝑃𝑃𝑇𝑇 = �
𝑃𝑃1                                                                   𝑓𝑓𝑓𝑓𝑓𝑓 𝑇𝑇 = 1 

�𝑃𝑃𝑇𝑇−1 + 𝑅𝑅𝑃𝑃𝑇𝑇−1�1 − 𝑃𝑃𝑇𝑇−1
𝑀𝑀� − 𝐶𝐶𝑇𝑇−1

𝐾𝐾
� 𝜂𝜂𝑇𝑇        𝑓𝑓𝑓𝑓𝑓𝑓 𝑇𝑇 > 1

, 

with ηT=𝑒𝑒𝜓𝜓𝑇𝑇where ψT were normal random variables with mean 0 and constant variance σ2. 
These coupled equations set the prior distribution for the proportion of carrying capacity p(PT) in 
each time period T > 1, conditioned on the proportion in the previous period. The initial 
proportion of carrying capacity was assigned its own prior p(P1), which is described in section 
3.1.2. 

3.1.1. Observation Error Models 

Two observation error models were applied to this current stock assessment: one for the CPUE 
indices and the other for the fishery-independent survey. The first observation error model 
related the observed fishery CPUE to the exploitable biomass of the bottomfish complex for each 
CPUE time series (i.e., 1949-2003 and 2003-2015). Although data from fishing year 1948 were 
used in CPUE standardization, the CPUE indices used within the stock assessment model started 
in fishing year 1949 to align with the starting year when complete catch data were available. It 
was assumed that the standardized fishery CPUE index (Ii,T) in year T in each time period i was 
proportional to biomass in year T with time period specific catchability coefficient qi 

(8) 𝐼𝐼𝑖𝑖,𝑇𝑇 = 𝑞𝑞𝑖𝑖𝐵𝐵𝑇𝑇 = 𝑞𝑞𝑖𝑖𝐾𝐾𝑃𝑃𝑇𝑇  

Observation error was added to the deterministic index equation (Eq. 8). The observed CPUE 
dynamics were subject to natural sampling variation which was assumed to be lognormally 
distributed. Given the lognormal observation errors, the observation equations for the CPUE 
index for each year T in time period i were 
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with νi,T = 𝑒𝑒𝜑𝜑𝑖𝑖,𝑇𝑇 where the φi,T were identically distributed normal random variables with mean 0 
and weighted variance (Wi,T·τi)2 with standard deviation τi and weighting factor Wi,T. The 
weighting factors (Wi,T) reflected the relative uncertainty of the value of the CPUE index in year 
T for time period i and were scaled using the relative coefficient of variation (CV) of CPUE in 
each year (Brodziak and Ishimura 2011). Specifically, the annual weighting factors were 
calculated as the ratio of the CV of CPUE in each year T and the minimum observed CV of 
CPUE across years as Wi,T = CV[CPUEi,T]/min(CV[CPUEi]). Minimum CVs were calculated 
separately for each CPUE index, and CVs were derived using the annual standard error of 
standardized CPUE and are provided in Tables 9.1 and 9.2. 

(9) 𝐼𝐼𝑖𝑖,𝑇𝑇 = 𝑞𝑞𝑖𝑖𝐾𝐾𝑃𝑃𝑇𝑇 ∙ 𝜈𝜈𝑖𝑖 ,𝑇𝑇 

The second observation error model related the relative biomass estimate from the fishery-
independent survey to the estimated proportion of carrying capacity in the process equations (Eq. 
3) scaled by survey catchability. The fishery-independent survey was estimated from two survey 
periods, spring and fall of calendar year 2016, which would correspond approximately to the 
beginning of fishery year 2017. The observed relative fishery-independent biomass estimate (S) 
was subject to natural sampling variation which was assumed to be lognormally distributed. The 
observation equation for the survey was  

(10) 𝑀𝑀2017 = 1
𝑞𝑞𝑀𝑀
𝑃𝑃2017𝐾𝐾 ∙ 𝛾𝛾𝑠𝑠 , 

where qS was a scalar to translate relative biomass to absolute biomass, and γS was a lognormal 
random variable with mean equal to 1.0 and variance ξ, which was the variance of the natural 
logarithm of the survey. The value for ξ was calculated based on the CV of the survey on the 
original scale as ξ = ln[CVS

2 + 1]. Attempts were made to use a prior distribution for the variance 
of the observation error model for the survey, as was done for observation errors for CPUE and 
for process error, but the estimate of the prior variance was highly uncertain. Therefore, a fixed 
value for the survey variance was used. The proportion of carrying capacity in 2017 (P2017) was 
calculated based on advancing the process equations with process error (Eq. 7) from 2015 to 
2017. Although P2017 was calculated to fit the available survey estimate for the beginning of 
fishing year 2017 (summer of calendar year 2016), the terminal year for the model estimates 
remained at fishing year 2015 because CPUE data was only available through 2015. Lastly, the 
scalar (qS) was calculated based on the number of theoretical samples within a survey grid. This 
was calculated based on the estimated effective radius (rad) of a single sample scaled to the total 
area within a sampling grid (250,000 m2), then multiplied by the number of sampling grids 
within the sampling domain (25,892) (see Ault et al. 2018) as  

(11) 𝑞𝑞𝑀𝑀 = 250,000
𝜋𝜋∙𝑓𝑓𝑟𝑟𝑟𝑟 2 25,892. 

The effective radius of a single survey sample was assigned its own prior p(rad), which is 
described in section 3.1.2. 

The joint distribution of the error terms over the two CPUE standardization periods defined the 
observation error likelihood function p(Ii,T|θ) for the Deep 7 bottomfish CPUE indices through 
time. The distribution of the error term for the fishery-independent survey defined the 
observation error likelihood function p(S|θ) for the Deep 7 bottomfish biomass estimate. 
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3.1.2. Prior Distributions 

A Bayesian estimation approach was used to estimate production model parameters. Prior 
distributions were employed to represent existing knowledge and beliefs about the likely values 
of model parameters. The carrying capacity parameter, the intrinsic growth rate parameter, the 
production shape parameter, the catchability parameters, the process and observation error 
variance parameters, the initial proportion of carrying capacity parameter, and the effective 
radius of a sample for the fishery-independent survey each had prior distributions. Unreported 
catch was also assigned a prior to account for uncertainty in its values. Unobserved biomass 
states expressed as the proportion of carrying capacity were included in the joint prior 
distribution and were conditioned on the parameter estimates and the previous proportion of 
carrying capacity and catch. A summary of assumed priors is found in Table 10. 

Prior for Carrying Capacity 

The prior distribution for carrying capacity p(K) was a moderately informative lognormal 
distribution with mean (𝜇𝜇𝐾𝐾) and variance (𝜎𝜎𝐾𝐾2) parameters: 

(12) 𝑝𝑝(𝐾𝐾) =  1
𝐾𝐾𝜎𝜎𝐾𝐾√2𝜋𝜋

𝑒𝑒𝑒𝑒𝑝𝑝 �− (𝑙𝑙𝑙𝑙  𝐾𝐾−𝜇𝜇𝐾𝐾)2

2𝜎𝜎𝐾𝐾2 �. 

The prior mean for K was set based on the 2011 assessment benchmark in which the product of 
the R and K parameters was roughly 2.9 million pounds (Brodziak et al. 2011). Assuming that the 
product R and K would be similar for the 2018 assessment and observing that the mean of the 
intrinsic growth rate prior was 𝜇𝜇𝑅𝑅 = 0.1, the mean value of K was set to be 𝜇𝜇𝐾𝐾 = 2.9/0.1 = 29.0 
million pounds. The variance parameter was set to achieve a CV for K of 50%. Overall, the prior 
mean of K was chosen to reflect the magnitude of exploitable biomass likely needed to support 
the estimated time series of fishery catches. The effect of the choice of prior mean on model 
results was assessed through sensitivity analyses. 

Prior for Intrinsic Growth Rate 

The prior distribution for intrinsic growth rate p(R) was a moderately informative lognormal 
distribution with mean (𝜇𝜇𝑅𝑅) and variance (𝜎𝜎𝑅𝑅2) parameters: 

(13) 𝑝𝑝(𝑅𝑅) =  1
𝑅𝑅𝜎𝜎𝑅𝑅√2𝜋𝜋

𝑒𝑒𝑒𝑒𝑝𝑝 �− (𝑙𝑙𝑙𝑙  𝑅𝑅−𝜇𝜇𝑅𝑅)2

2𝜎𝜎𝑅𝑅
2 �. 

The mean of the intrinsic growth rate parameter was set to be μR = 0.10. This mean value was 
chosen to reflect an expectation of low productivity for Deep 7 bottomfish. The specific choice 
of μR = 0.10 was based on the recommendations of Musick (1999), balancing a tradeoff between 
very low productivity (based on information about expected life span) and medium productivity 
(based on information about growth) for the primary Deep 7 species opakapaka (Andrews et al. 
2012). The probable range of R values of 0.05-0.15 recommended by Musick (1999) was 
represented with a prior mean of R = 0.10 with a CV of 25%, which produces a 95% confidence 
interval that approximates the suggested range on the log scale. The effect of the choice of prior 
mean on model results was assessed through sensitivity analyses. 
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Prior for Production Shape Parameter 

The prior distribution for the production function shape parameter p(M) was a moderately 
informative gamma distribution with rate parameter λ and shape parameter k: 

(14) 𝑝𝑝(𝑀𝑀) =  𝜆𝜆
𝑘𝑘𝑀𝑀𝑘𝑘−1𝑒𝑒𝑒𝑒𝑝𝑝 (−𝜆𝜆𝑀𝑀)

Γ(𝑘𝑘)
. 

The values of the rate and shape parameters were set to λ = k = 0.5. This choice of parameters 
defined the mean of p(M) to be μM = 1, which corresponded to the value of M for the Schaefer 
production model. The choice of k = 0.5 also implied that the CV of the shape parameter prior 
was about 140%. In effect, the shape parameter prior was centered on the symmetric Schaefer 
production model as the default with sufficient flexibility to fit an asymmetrical production 
function. The effect of the choice of prior mean on model results was assessed through 
sensitivity analyses. 

Prior for Catchability 

The prior for bottomfish fishery catchability p(qi) in time period i was chosen to be an 
uninformative uniform distribution on the interval [10-5, 105]. This diffuse prior was chosen to 
allow the data and model structure to completely determine the distribution of fishery 
catchability estimates. The effect of the choice of prior distribution on model results was 
assessed through sensitivity analyses. 

Prior for Unreported Catch Error 

An uninformative prior was used for the unreported catch error. The estimates of unreported 
catch each year were assumed to be observed with a prior error distribution p(CU) for fitting the 
production model to the observed fishery data. The catch error prior was chosen to propagate 
uncertainty in the estimation of unreported catch into the estimation of sustainable harvest rates 
and biomasses. It was assumed that the error in unreported catch was uniformly distributed about 
the point estimate with a ±40% error. For example, if the estimate of unreported catch was 100 
thousand pounds in a given year, then the prior distribution of unreported catch error was 
uniformly distributed between 60 and 140 thousand pounds, i.e., CU ~ Uniform[60, 140]. The 
error value was taken from preliminary analyses of Hawaii Marine Recreational Fishery Survey 
(HMRFS) data (H. Ma, PIFSC, pers. comm.), and approximated the mean CV of yearly mean 
estimates of the percent of opakapaka, onaga, and ehu designated as not-sold from 2004-2016. 
The choice to use 40% also addressed reviewer comments from the past assessment that the 
value used (20%) was insufficient to characterize the expected variability in unreported catch 
estimates (Neilson 2015). The effect of the choice of prior interval on model results was 
assessed through sensitivity analyses. 
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Priors for Error Variances 

Priors for the process error variance p(σ2) and observation error variance p(τi2) for time period i 
were chosen to be moderately informative inverse-gamma distributions with rate parameter λ>0 
and shape parameter k>0: 

(15) 𝑝𝑝(𝜎𝜎2) =  
𝜆𝜆𝑘𝑘 (𝜎𝜎2)−𝑘𝑘−1𝑒𝑒𝑒𝑒𝑝𝑝 �−𝜆𝜆𝜎𝜎2�

Γ(𝑘𝑘)
. 

 
The inverse-gamma distribution is a useful choice for priors that describe model variances 
(Congdon, 2001). For the process error variance prior, the rate parameter was set to λ = 0.1 and 
the shape parameter was k = 0.2. For this choice of parameters, the expected value of the inverse-
gamma distribution is not defined, and the mode for σ2 denoted as MODE[σ2] = 1/12 ≈ 0.083 
provides an alternative measure of the central tendency of the distribution. For the observation 
error variance prior, the rate parameter was set to λ = 1, and the shape parameter was set to k = 
0.2. The mode for τi2 with this choice of parameters was MODE[τi2] = 10/12 ≈ 0.83. The ratio of 
the modes of the observation error prior to the process error prior was MODE[τi2]/MODE[σ2] = 
10. Thus, the central tendency of the observation error variance prior was assumed to be about 
tenfold greater than the process error variance prior. The choice of the process error prior 
matched the expected scaling of process errors for the state equation describing changes in the 
proportion of carrying capacity (Eq. 7), which was on the order of 0 to 1. Similarly, the choice of 
the observation error prior matched the expected scaling of observation errors for the observation 
equation (Eq. 9) describing the model fit to observed CPUE, which was on the order of 1 to 10. 
The effect of the choice of prior distribution on model results was assessed through sensitivity 
analyses. 

Prior for Proportion of Carrying Capacity 

A prior distribution for the initial (1949) biomass in proportion to carrying capacity, p(PT=1), was 
determined through an empirical Bayes framework by examining the model fits to the CPUE 
data. The prior distribution for P1 was a moderately informative lognormal distribution with 
mean (𝜇𝜇𝑃𝑃) and variance (𝜎𝜎𝑃𝑃2) parameters:  

(16) 𝑝𝑝(𝑃𝑃1) =  1
𝑃𝑃1𝜎𝜎𝑃𝑃√2𝜋𝜋

𝑒𝑒𝑒𝑒𝑝𝑝 �− (𝑙𝑙𝑙𝑙𝑃𝑃1− 𝜇𝜇𝑃𝑃 )2

2𝜎𝜎𝑃𝑃
2 �. 

The prior mean for P1 was determined in two steps. First, initial models were run with a prior 
mean for P1 ranging from 0.1 to 1, in increments of 0.1. The value of the prior mean for P1 that 
minimized the sum of the root-mean square error (RMSE) of the fit to the CPUE indices was 
determined to be 𝜇𝜇𝑃𝑃 = 0.5 (Figure 5). Second, the final prior mean for P1 was set to equal the 
posterior mean of P1 from the initial model with 𝜇𝜇𝑃𝑃 = 0.5, which was 𝜇𝜇𝑃𝑃 = 0.53. The coefficient 
of variation of the lognormal distribution of P1 was set to be 20% during initial exploration of 
P1. This choice of CV followed the approach from the last two stock assessments (Brodziak et 
al. 2011; 2014) and implied that probable values of P1 ranged from roughly 0.35 to 0.75. For the 
2018 benchmark stock assessment, probable values for 𝜇𝜇𝑃𝑃 were within the range of 0.35-0.75 
(Figure 5), so the CV of the lognormal distribution of P1 was kept at 20%. Prior mean values for 
the proportion of carrying capacity in other years T, where T > 1, were implicitly set following 
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the prior values of PT-1, catch, and other parameters within the process equation (Eq. 3). The 
effect of the choice of prior mean on model results was assessed through sensitivity analyses. 

Prior for effective radius of a single sample for the fishery-independent survey 

Uncertainty in the scalar used to convert the relative biomass estimate from the fishery-
independent survey to an absolute estimate (Eq. 11) was included in the model as a prior 
distribution on the effective radius of a single sample for the survey. The prior distribution for the 
radius p(rad) was an informative lognormal distribution with mean (𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟) and variance (𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟2 ) 
parameters: 

(17) 𝑝𝑝(𝑓𝑓𝑟𝑟𝑟𝑟) =  1
𝑓𝑓𝑟𝑟𝑟𝑟 𝜎𝜎𝑓𝑓𝑟𝑟𝑟𝑟 √2𝜋𝜋

𝑒𝑒𝑒𝑒𝑝𝑝 �− (ln 𝑓𝑓𝑟𝑟𝑟𝑟 −𝜇𝜇𝑓𝑓𝑟𝑟𝑟𝑟 )2

2𝜎𝜎𝑓𝑓𝑟𝑟𝑟𝑟
2 �. 

The prior mean for rad was 20.2 m, based on the best estimate from Ault et al. (2018). A CV of 
50% was selected so that the 95% confidence interval around the prior mean was approximately 
between 7.5 m to 41.6 m, which were the minimum and maximum values, respectively, for the 
effective radius of a single sample (Ault et al. 2018). As such, the prior distribution of rad was 
also constrained to be between 7.5 m and 41.6 m in the model.  

3.1.3. Posterior Distribution 

Independent samples from the joint posterior distribution of the production model parameters 
were numerically simulated to estimate model parameters and make inferences. In comparison to 
the 2011 benchmark stock assessment, the current stock assessment model included two time 
periods of CPUE observations, 1949-2003 and 2003-2015; two associated catchability 
parameters, q1 and q2, and observation error variances, τ1

2 and τ2
2; and an estimate of relative 

biomass from the fishery-independent survey. The joint posterior distribution of model 
parameters θ, p(θ|D), was proportional to the product of the priors of the unobservable states and 
the joint likelihood of the CPUE and survey data given catch, CPUE, and survey data (D): 

(18) 
𝑝𝑝(𝜃𝜃|𝐷𝐷)  ∝ 𝑝𝑝(𝐾𝐾)𝑝𝑝(𝑅𝑅)𝑝𝑝(𝑀𝑀)𝑝𝑝(𝑞𝑞1)𝑝𝑝(𝑞𝑞2)𝑝𝑝(𝜎𝜎2)𝑝𝑝(𝜏𝜏1

2)𝑝𝑝(𝜏𝜏2
2)𝑝𝑝(𝑃𝑃1)𝑝𝑝�𝐶𝐶𝑈𝑈𝑇𝑇�𝑝𝑝(𝑓𝑓𝑟𝑟𝑟𝑟)

×  𝑝𝑝(𝑀𝑀|θ)∏ 𝑝𝑝(𝑃𝑃𝑇𝑇|θ)∏ 𝑝𝑝�𝐼𝐼1,𝑇𝑇|θ�𝑁𝑁1
𝑇𝑇=1

𝑁𝑁+2
𝑇𝑇=2 ∏ 𝑝𝑝�𝐼𝐼2,𝑇𝑇|θ�,𝑁𝑁

𝑇𝑇=𝑁𝑁1
 

 

where N1 was the number of data points in the first time period, and N was the number of data 
points over both time periods. We used a numerical MCMC simulation to generate sequences of 
estimates from the posterior distribution. Parameter estimation for multiparameter and nonlinear 
Bayesian models like the bottomfish production model is typically based on simulating a large 
number of independent samples from the posterior distribution (Gelman et al. 1995). In this case, 
MCMC simulation (Gilks et al. 1996) was applied to numerically generate samples from the 
posterior distribution. The WinBUGS software (Lunn et al. 2000; Spiegelhalter et al. 2003) and 
the R2WinBUGS package (Sturtz et al. 2005) in R version 3.2 (R Core Team 2016) were applied 
to program the production model, to set the initial conditions, to perform the MCMC 
calculations, to generate model diagnostics, to summarize the assessment model results, and to 
generate projections.  
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Production model results included the stock status of the Deep 7 bottomfish complex in the MHI 
relative to MSY-based reference points. The relevant Fishery Ecosystem Plan (WPRFMC 2009) 
indicates that the overfishing criterion is F/FMSY > 1, and the overfished criterion is B/BMSY < (1-
natM). Time series of the relative harvest rate (e.g., in 2015 the relative harvest rate was the ratio 
H2015/HMSY) and relative biomass (e.g., the ratio B2015/BMSY) were calculated for MHI Deep 7 
bottomfish using the median (for harvest) and mean (for biomass) of the ratios from the joint 
posterior distribution of model parameters. 

3.1.4. Convergence Diagnostics 

MCMC simulations were conducted in an identical manner for the baseline assessment model as 
for all sensitivity analyses described below. Three chains of 500,000 samples were simulated 
from the posterior distribution in each model run. A range of initial conditions for R and K were 
used across the chains. The first 200,000 samples of each simulated chain were excluded from 
the estimation process to remove dependence of the MCMC chains on the initial conditions and 
to ensure stationarity of the remaining chain. Each chain was thinned by 20 to reduce 
autocorrelation, e.g., every twentieth sample from the posterior distribution was stored and used 
for inference. As a result, a total of 45,000 samples from the posterior distribution were available 
to summarize model results.  

Convergence of the simulated MCMC chains to the posterior distribution was confirmed using 
the Geweke convergence diagnostic (Geweke 1992), the Gelman and Rubin diagnostic (Gelman 
and Rubin 1992; Brooks and Gelman 1998), and the Heidelberger and Welch stationarity and 
half-width diagnostics (Heidelberger and Welch 1992), as well as by monitoring the trace and 
assessing autocorrelation plots. These diagnostic tests were implemented in the R Language (R 
Core Team 2016) using the CODA software package (Best et al. 1996; Plummer et al. 2006). 
The set of convergence diagnostics were applied to key model parameters (intrinsic growth rate, 
carrying capacity, production function shape parameter, catchability coefficients, all MSY-
parameters, error variances, and the effective sampling radius of a single sample for the fishery-
independent survey) to verify convergence of the MCMC chains to the posterior distribution 
(e.g., Ntzoufras 2009). 

3.1.5. Model Diagnostics 

Residuals from the baseline model fit to CPUE by time period were used to measure the 
goodness of fit of the production model. These log-scale observation errors εi,T of observed 
minus predicted Deep 7 bottomfish CPUE were 

(19) 𝜀𝜀𝑖𝑖 ,𝑇𝑇 = ln�𝐼𝐼𝑖𝑖,𝑇𝑇� − ln(𝑞𝑞𝑖𝑖𝐾𝐾𝑃𝑃𝑇𝑇). 

Nonrandom patterns in the CPUE residuals suggested that the observed CPUE may not have 
conformed to one or more model assumptions. The RMSE of the CPUE fit provided a simple 
diagnostic of the model goodness of fit with lower RMSE indicating a better fit. As the fishery-
independent survey estimate was available for only one year, no time trend in model diagnostics 
could be done.  

Comparisons of the prior distributions and estimated posterior distributions were made to show 
whether the observed catch and standardized CPUE data were informative for estimating model 
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parameters. This comparison included the priors and posteriors for the following model 
parameters: carrying capacity, production shape, intrinsic growth rate, initial proportion of 
carrying capacity, observation error variances, process error variance, catchability, and effective 
radius of a sample for the fishery-independent survey. The posterior distributions for catch in 
2015 and the derived quantities MSY, BMSY, HMSY, and PMSY were also compared to the 
respective prior distributions.  

3.2. Catch Projections for 2018-2022 

Estimated posterior distributions of assessment model parameters for 1949-2015 were projected 
forward for fishing years 2016-2022 to estimate probable stock status (i.e., the probability of 
overfishing, P*) in 2018-2022 under alternative future reported catches. The projection results 
accounted for uncertainty in the distribution of estimates of model parameters, although process 
error in the biomass dynamics was not included. Projections were conducted for a set of 
alternative values of reported catches in 2018-2022 to estimate the probability of overfishing and 
other stock status measures as a function of catch.  

The projections were conducted assuming each value for the future reported catch was constant 
through fishing years 2018-2022. Reported catch for 2017 was assumed to be equal to the 
average reported catch from 2014-2016 (i.e., 300,000 lbs.). Reported catch was scaled up to an 
estimate of total catch following the methods used in the estimation procedure for the surplus 
production model in 1949-2015. First, the unreported catch was calculated by multiplying 
reported catch by a non-reporting ratio generated from a uniform distribution with bounds equal 
to 0.6-1.4 multiplied by the average non-reporting ratio from 2011-2015 (i.e., 1.06). Second, the 
unreported catch was added to the reported catch for an estimate of total catch.  

Projections were used to compute the 5-year constant commercial Deep 7 catch in the MHI for 
2018-2022 that would produce probabilities of overfishing varying from 0% to 50% by 5% 
intervals. The effects of alternative annual reported catches were calculated using a numerical 
grid from 0 to 1000 thousand pounds of reported commercial catch of Deep 7 bottomfish over 5 
years in steps of 2,000 pounds. The nearest grid value was used to approximate the catch 
corresponding to each 5% increment in probability. 

3.3. Retrospective Analysis 

A retrospective analysis was conducted to assess the effect of removing successive years of data 
off the end of the assessment time series on model estimates of biomass and harvest rate. The 
retrospective analysis was conducted starting with a model with the terminal year estimates (i.e., 
2015) and excluding the fishery-independent survey. This was done because only a single year of 
data was available for the survey. Removing the survey would alter the structure of the model 
beyond simply removing data points from time series such as catch and CPUE. The retrospective 
analysis was conducted by successively deleting the catch and CPUE data for years 2015 through 
2012 in one-year increments, refitting the assessment model, and summarizing the results. The 
degree of retrospective pattern compared to the base case was assessed using Mohn’s rho (ρ; 
Mohn 1999): 
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where y1 = 1949 and y2 = 2015 span the full data set, X indicates either exploitable biomass or 
harvest rate, and y indicates the terminal year for each retrospective refitting (i.e., y from 2011 to 
2015). 

3.4. Sensitivity Analyses 

A suite of sensitivity analyses was conducted to evaluate how the baseline model results would 
be affected if different assumptions were made regarding unreported catch ratios, model 
structure, or prior distributions. Scenarios for sensitivity analyses are described below and in 
Table 11. 

Sensitivity to alternative prior distribution for carrying capacity (K) 

The sensitivity of baseline model results to the prior mean for carrying capacity was evaluated 
by fitting the model using different prior means for K. For these analyses, the prior mean for K 
was changed ±25% and ±50%, which corresponded to values µK = 14.5 million pounds (50% 
decrease in baseline prior mean), µK = 21.75 million pounds (25% decrease in baseline prior 
mean), µK = 36.25 million pounds (25% increase in baseline prior mean), and µK = 43.5 million 
pounds (50% increase in baseline prior mean). This sensitivity analysis addressed whether the 
choice of a prior mean had a strong influence on model estimated biomass and harvest rate. 

Sensitivity to alternative prior distribution for intrinsic growth rate (R)  

The sensitivity of baseline model results to the prior mean for intrinsic growth rate was also 
evaluated by fitting the model using different prior means for R. The prior mean for R was 
reduced by 50% to 𝜇𝜇𝑅𝑅= 0.05, to represent the lower end of a low productivity stock (or upper end 
of a very low productivity stock), and was increased by 50% to 𝜇𝜇𝑅𝑅= 0.15, to represent the higher 
end of a low productivity stock. Additionally, the prior mean for R was increased by 150% to 𝜇𝜇𝑅𝑅= 
0.25 to reflect a medium productivity classification as described by Musick (1999). This 
sensitivity analysis addressed whether the choice of a baseline prior mean for R (𝜇𝜇𝑅𝑅= 0.10) had a 
strong influence on model results. 

Sensitivity to alternative prior distribution for production model shape parameter (M)  

The sensitivity of baseline model results to the prior mean for the production model shape 
parameter M was evaluated. This sensitivity analysis showed the effects on biomass and harvest 
rate estimates by varying the rate parameter λ such that the prior mean for M, which equaled µM = 
k/λ, was changed from µM = 0.5 to µM = 1.5, in increments of 0.25. This corresponded to a 
change in the mean of the distribution of ±25% and ±50%. The values of λ to achieve this were λ 
= 1, 2/3, 1, 2/5, and 1/3. Note that the value for the shape parameter k was 0.5.  

Sensitivity to alternative prior distribution for proportion of carrying capacity (P1) 
The sensitivity of baseline model results to the prior mean for the initial proportion of carrying 
capacity in 1949 was evaluated by fitting the model using different prior means for P1. As with 
the analyses for K, the prior mean for the initial proportion of carrying capacity was changed by 
±25% and ±50% to μP = 0.265 (50% decrease), μP = 0.3975 (25% decrease), μP = 0.6625 (25% 

(20)  𝜌𝜌 = ∑ �𝑋𝑋(𝑦𝑦1:𝑦𝑦),𝑦𝑦 − 𝑋𝑋(𝑦𝑦1:𝑦𝑦2),𝑦𝑦�𝑦𝑦 /𝑋𝑋(𝑦𝑦1:𝑦𝑦),𝑦𝑦 , 
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increase), and μP = 0.795 (50% increase). This sensitivity analysis addressed whether the choice 
of a prior mean for P1 had a strong influence on model results.  

Sensitivity to alternative prior distribution for observation error variances (τi2) 

The sensitivity of baseline model results to the prior mode for the observation error variances 
was evaluated. This sensitivity analysis showed the effects on biomass and harvest rate estimates 
by changing the rate parameter λ such that the prior mode for τi2, which equaled λ/(k+1), ranged 
over five orders of magnitude from 0.00833 to 83.3, in multiples of 10. Note that the value for 
the shape parameter k was 0.2. 

Sensitivity to alternative prior distribution for process error variance (σ2) 

The sensitivity of baseline model results to the prior mode for the observation error variance was 
evaluated. This sensitivity analysis showed the effects on biomass and harvest rate estimates by 
changing the rate parameter λ such that the prior mode for σ2, which equaled λ/(k+1), ranged 
over four orders of magnitude from 0.000833 to 8.3, in multiples of 10. Note that the value for 
the shape parameter k was 0.2. 

Sensitivity to alternative unreported catch ratios (U) 

The sensitivity of baseline model results to the assumed values of unreported catch ratios (U) 
was evaluated. This is separate from the previous sensitivity on unreported catch error. Four 
alternative scenarios for the ratio of unreported catch were considered (Figure 6). Total catch 
was calculated as the sum of reported catch (CR) and unreported catch (CU), which was 
calculated as U*CR. 

Alternative catch scenario I – The first alternative scenario for unreported catch ratios was 
identical to catch scenario I from the previous benchmark stock assessment (Brodziak et al. 
2011), which was based on 5-year averages of the values reported in Zeller et al. (2008). Zeller et 
al. (2008) provided a single estimate and so under catch scenario I, the ratios of unreported catch 
were the same across all species. The average ratio of unreported catch to reported catch in the 
last five years (2011-2015) under alternative catch scenario I was 2.5, which represented an 
expectation of high unreported catch in all years consistent for all species. 

Alternative catch scenario II – The second alternative scenario for unreported catch ratios was 
similar to the baseline catch scenario but differed in the value of the estimates beginning in 1998. 
The baseline catch scenario averaged the species-specific unreported catch ratios reported by 
Martell et al. (2011) for years 2004 and 2005, with the species-specific ratios reported by 
Lamson et al. (2007). The resulting value was applied to years 2000-2015. However, given that 
the preliminary analyses of HMRFS data suggested unreported catch ratios in 2004-2015 were 
more similar in magnitude to the ratios reported in 2005 by Lamson et al. (2007), ratios from 
only Lamson et al. (2007) were applied for 2000-2015 prior to taking 5-year averages. The 
average ratio of unreported catch to reported catch in the last five years (2011-2015) under 
alternative catch scenario II was 0.22, which represented an expectation of low unreported catch 
in recent years. 
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Alternative catch scenario III – The third alternative scenario for unreported catch ratios was 
based on the recommendation from the review panel for the 2014 stock assessment to maintain a 
constant unreported ratio through time (Nielsen 2015). Estimates from sources of species 
specific ratios were averaged within studies where applicable, then averaged across studies. 
Hence, we averaged the 2005 estimates from Lamson et al. (2007), the 1990 estimate from 
Hamm and Lumm (1992), and the average of the 2004 and 2005 estimates from Martell et al. 
(2011) to calculate an average unreported catch ratio by species over time. The average ratio of 
unreported catch to reported catch in the last five years (2011-2015) under alternative catch 
scenario III was 2.27, which represented an expectation of high unreported catch in all years. 
Note that this scenario was similar in value to alternative catch scenario I but incorporated 
additional information sources. 

Alternative catch scenario IV – The fourth alternative scenario for unreported catch ratios 
represented an expectation of no unreported catch. The ratio of unreported catch for all species in 
all years was set to zero. This scenario evaluated the effect of removing unreported catch on 
baseline model results.  

Sensitivity to alternative error distributions for unreported catch 

The sensitivity of baseline model results to the assumed amount of error in the estimation of 
unreported catch was evaluated. The effects of removing unreported catch error and by 
decreasing and increasing the range of unreported catch error by 50% were evaluated by 
changing the width of the interval of the uniform distribution of catch errors to [0.9999, 1.0001], 
[0.80, 1.20], and [0.4, 1.6] from the baseline interval of [0.60, 1.40]. The sensitivity of model 
results to directional biases in the unreported catch error was also evaluated. The effects of a 25% 
decrease in average catch error was assessed by changing the interval of catch errors to [0.45, 
1.25], while the effects of a 25% increase in average catch error were evaluated by setting the 
catch error interval to be [0.75, 1.55]. 

Sensitivity to alternative parameterization of catchability (qi) 

The sensitivity of baseline model results to the assumption of constant catchability was 
evaluated. Catchabilities (q1,T1 , q2,T2 ) were assumed to follow a random-walk process where for 
T1=1949 and T2=2003, the natural logarithm of qi,T was an uninformative uniform distribution 
on the interval [ln(10-5), ln(105)]. For T1 > 1949 and T2 > 2003, the natural logarithm of qi,T was 
a moderately informative normal distribution with mean (μlnqt = ln(qi,T-1)) and variance set to 
produce a CV of 0.5. This analysis addressed whether baseline assumptions of the surplus 
production model that biomass was proportional to catchability had a strong influence on results. 

Sensitivity to choice of uniform prior for observation and process error variances 

The sensitivity of baseline model results to the choice of probability distribution for the prior of 
observation and process error variances was evaluated. This sensitivity analysis showed the 
effects of choosing a non-informative uniform prior on the interval [0,100] for the standard 
deviation of process and observation errors, as opposed to an inverse-gamma prior on the error 
variances, as recommended by Gelman (2006).  
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Sensitivity to inclusion of fishery-independent survey biomass estimate 

The sensitivity of baseline model results to the inclusion of the fishery-independent survey 
biomass estimate was evaluated. Including the fishery-independent survey increased the time 
period for the process equations two years beyond the terminal year, from 2015 to 2017. 
Therefore, the sensitivity of model result to removing the survey was done for both removing 
2017 and removing 2016 and 2017. The results for both sensitivities were very similar and so 
only results when excluding 2016 and 2017 were presented. This sensitivity analysis showed the 
effects of including the fishery-independent survey on the estimation of model parameters.  

Sensitivity to uncertainty in the effective radius for the fishery-independent survey 

The sensitivity of baseline model results to uncertainty in the absolute biomass estimate from the 
fishery-independent survey was also evaluated. Uncertainty for this sensitivity was evaluated by 
changing the CV for the prior distribution on the effective radius of a sample for the fishery-
independent survey. The CV of the prior on rad was reduced to 0.01, effectively placing a point 
prior on the absolute biomass estimate as provided in Ault et al. (2018). 

4. COMPARISON WITH A SINGLE SPECIES DATA AND MODEL 

Data were available to produce a single species surplus-production model to compare to the 
assessment for the Deep 7 complex. Catch, CPUE, and survey data were revised to focus solely 
on opakapaka and used within the same modeling method as for the Deep 7 model described in 
this report. Opakapaka was chosen for modeling because it is numerically the most abundant 
species in the complex and has historically made up the greatest proportion of the catch of the 
Deep 7 complex. Results for data filtering and standardization for the opakapaka model are 
provided in the appendices. Surplus production model comparisons to the Deep 7 assessment 
model are presented in the results (section 5.6). 

4.1. Catch, CPUE, and Survey Data for Single Species Modeling 

Species-specific reported (Table 2) and unreported catch (Table 4) data for opakapaka were 
already calculated for the Deep 7 stock assessment model and were used for the single species 
model. Similarly, an estimate for total biomass as the product of a relative biomass estimate and 
a scaling constant for opakapaka was provided in Ault et al. (2018) and was 6.87 million pounds 
with a standard error of 3.14 million pounds.  

Generating a CPUE index for opakapaka required additional analyses from what was done for 
the Deep 7 index. Fishers do not report targeted species when reporting catch data in the fisher 
reported database. Previous filtering, described in section 2.5, represented the best information 
available in determining targeted Deep 7 bottomfish fishing, but distinguishing targeting among 
the Deep 7 species required additional analysis. The method of Stephens and MacCall (2004) 
was used to subset fishing events that were likely targeting opakapaka from the final event-based 
dataset for Deep 7, which was used to calculate CPUE indices for opakapaka only. Stephens and 
MacCall (2004) used logistic regression of the catch composition (presence/absence) of non-
target species to predict probability of catching the target species. In our application, opakapaka 
was defined as the target species, and species representing the highest 99% of cumulative catch 
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were defined as non-target species. Of the 155 species in the final filtered dataset, only 38 
represented the highest 99% of the cumulative catch, and thus used in the analysis. 

Following the formulation in Stephens and MacCall (2004), Yj was defined as the categorical 
variable describing the presence or absence of opakapaka in fishing event j such that Yj = 1 if 
fishing event j caught any pounds of opakapaka, and Yj = 0 if no opakapaka were caught. 
Similarly, Xij were defined as categorical variables describing the presence or absence of non-
target species i in fishing event j, such that Xij = 1 if fishing event j caught any pounds of species 
i, and Xij = 0 if fishing event j caught 0 pounds of species i. A logistic regression with a logit link 
function with dependent variable Yj and independent variables Xij was done using the glm 
function in the R statistical package, version 3.2 (R Core Team 2016) to predict the probability 
that each fishing event targeted opakapaka. Model selection of significant covariates was done 
using backward model selection. Five of the 38 species were insignificant and removed from the 
final model.  

The approach used by Stephens and MacCall (2004) was applied to determine the critical value 
at which to consider fishing as targeting opakapaka. The value that minimized the number of 
incorrect predictions (0.51), both incorrectly assigning a fishing event to target opakapaka when 
it did not, and when incorrectly assigning a fishing event to not target opakapaka when it did, 
was chosen as the critical value. Every fishing event with predicted probability of catching 
opakapaka greater than or equal to 0.51 (58% of fishing events) was assumed to have targeted 
opakapaka and was used in the single species CPUE standardization. The total pounds of 
opakapaka caught in these fishing events was then calculated and divided by the corresponding 
amount of effort (days fished from 1948-September 2002, and hour fished from October 2002 – 
2015) to calculate two CPUE time series, as was done with the dataset for the Deep 7 complex. 
The final event-based dataset for use in the opakapaka only CPUE standardization consisted of 
120,650 data points. 

4.2. CPUE Standardization for Single Species Modeling 

The same methods used to calculate the standardized index of CPUE for the Deep 7 bottomfish 
complex described in section 2.5.3 were also used to calculate the standardized index of 
opakapaka CPUE. The change in AIC, log-likelihood, and degrees of freedom for each predictor 
from the Bernoulli and lognormal processes for both time periods are provided in the Appendix 
(Table A1). 

The best-fit opakapaka model for the early time period varied slightly from the best-fit model for 
the Deep 7 bottomfish complex. The difference for the Bernoulli process was that pounds of uku 
was selected and the interaction term for area and quarter was not selected for the best fit 
opakapaka model. The difference for the lognormal process was that pounds of uku was not 
selected for the best fit opakapaka model. The best-fit opakapaka model for the Bernoulli process 
reduced deviance by 13% from the null model (intercept only) and 11% from a model with 
fishing year only. The best-fit model for the lognormal process reduced deviance by 14% from 
the null model (intercept only), 3% from the model with fisher only, and 2.3% from the model 
with year and fisher only. 
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The best-fit opakapaka model for the recent time period also varied slightly from the best-fit 
model for the Deep 7 bottomfish complex. Cumulative experience was not selected for the 
Bernoulli process in the opakapaka model but was for the Deep 7 model. The same variables 
were selected for the lognormal process in the opakapaka model as were selected for the Deep 7 
model. The best-fit opakapaka model for the Bernoulli process reduced deviance by 19.9% from 
both the null model (intercept only), and 19.5% from a model with fishing year only. The best-fit 
model for the lognormal process reduced deviance by 17% from the null model (intercept only), 
6% from the model with fisher only, and 5% from the model with year and fisher only. 

Regression diagnostics for the best-fit opakapaka models were comparable to those for the best 
fit Deep 7 models (Figures A1.1-A1.4). The diagnostic plots were not considered to indicate 
serious violations in model assumptions for the Bernoulli and lognormal processes for either 
time period. The resulting index for the early and recent time periods was then calculated along 
with relative CV values (Tables A2.1 and A2.2). As with the Deep 7 complex surplus production 
model, data from fishing year 1948 were used in CPUE standardization. However, the CPUE 
index used in the stock assessment model started in fishing year 1949 to align with the starting 
year when complete catch data were available. 

4.3. Assessment Model for Single Species Modeling 

Parameter values were changed within the Bayesian surplus production model to reflect the 
species being assessed. Prior distributions for carrying capacity and for initial proportion of 
carrying capacity were modified to relate to values for opakapaka. The number of iterations and 
the length of the burn-in period were also reanalyzed. The prior mean for carrying capacity was 
reduced by 67.7% based on the ratio of estimated opakapaka biomass to estimated Deep 7 
biomass from the survey (Ault et al. 2018). Consequently, the prior mean for carrying capacity 
was set to µK = 19.6. Similarly, the approach to estimate the prior mean for P1 was redone using 
opakapaka data. The model with prior mean of P1 equal to 0.6 minimized the RMSE of the 
CPUE indices (Figure A2), and the posterior estimate from this model was 0.61. The curvature 
of the RMSE curve across initial values for µP was similar to that from the Deep 7 model; 
therefore the CV for P1 was kept at 20%. A total of 500,000 iterations were run for each of three 
chains. The first 200,000 samples were removed as a burn-in period in each chain, and every 
20th sample was kept, resulting in a total of 45,000 samples for model inference.  

5. RESULTS 

In this section, production model outcomes for the Deep 7 complex are described. The results 
include: convergence and model diagnostics, exploitable biomass and fishing mortality estimates 
to assess stock status, retrospective analysis, sensitivity analyses, and projection analyses. A 
summary of the opakapaka production model results is also described.  

5.1. Diagnostics 

5.1.1. Convergence Diagnostics 

Convergence diagnostics indicated that the MCMC simulation to estimate the posterior 
distribution of production model parameters converged (Table 12). In particular, none of the 
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Geweke diagnostics were greater than 2 standard deviations, indicating that the burn-in period 
removed any initial nonstationarity from the MCMC chains. The Gelman and Rubin potential 
scale reduction factors were equal to unity, confirming convergence to the posterior distribution. 
The Heidelberger and Welch stationarity and half-width diagnostic tests were also passed by all 
of the parameters at a confidence level of α = 0.05 and ratio of halfwidth to sample mean of 0.1. 
The stationarity test passed for the intrinsic growth rate in the first chain only if the first 10% of 
samples was removed. This was not considered a serious violation and all samples were used for 
summarizing model results. Autocorrelation was low for the majority of parameters. The highest 
lag1 autocorrelation was 0.66 for K; however, the lag-5 value was reduced to 0.17. Visual 
inspection of trace plots for monitored parameters did not reveal convergence issues. Overall, the 
convergence diagnostics indicated convergence of the 2018 base case assessment model. 

5.1.2. Model Diagnostics 

Model residuals indicated that the production model provided a good fit to the standardized 
CPUE observations during both the 1949-2003 (Figures 7 and 8) and 2003-2015 (Figures 9 and 
10) time periods. Model residuals did not exhibit significant trends in either time period, but did 
have non-constant variance for both time periods and were non-normal for the 1949-2003 time 
period. Large residuals toward the beginning of the 1949-2003 time period resulted in non-
normality (Figure 8) and a large residual at the end of the 2003-2015 time period resulted in non-
constant variance (Figures 10). For the 1949-2003 time period, residuals were normal (p = 0.38) 
when the three largest residuals were excluded from diagnostic tests. Variance in the residuals 
was constant (p = 0.53) for the 2003-2015 time period when the residual from 2015 was 
excluded from diagnostic tests.  

Comparisons of assumed prior distributions and estimated posterior distributions showed that the 
priors were more informative for some model parameters than others (Table 10; Figure 11). The 
posterior mean (27.55) for the carrying capacity parameter was about 5% less than the prior 
mean (29; Table 10). The posterior mean (0.111) for intrinsic growth rate was 11% greater than 
the prior mean (0.10; Table 10). The posterior mean (0.56) for the initial proportion of carrying 
capacity was 5% greater than the prior mean (0.53; Table 10). The similarity between prior and 
posterior means for carrying capacity, intrinsic growth rate, and initial proportion of carrying 
capacity, all moderately informative priors, suggested that the priors were more informative for 
these parameters. The posteriors for catch matched the priors for all years. The results shown for 
2015 (Figure 12) indicate uncertainty was accounted for while mean unreported catch was 
unchanged from input unreported catch.  

The priors appeared to be slightly less informative when estimating other parameters, including 
the shape parameter, which varied from the prior mean by 226% (Table 10; Figure 11). Posterior 
distributions for catchability, process error, and observation errors were substantially different 
from the prior distributions, which were chosen to be uninformative (Table 10; Figure 11). The 
priors were less informative for estimating MSY and related parameters BMSY, HMSY, and PMSY 
(Figure 13), although the prior distributions were not formally selected but instead were derived 
from the priors for R, K, and M. The posterior means for MSY (1048 thousand pounds) and HMSY 
(0.069) were 94% and 103% greater than the prior means. The posterior means for BMSY (15.42 
million pounds) and PMSY (0.57) were 13% and 5% greater than the prior means, respectively 
(Figure 13). Note that the posterior distribution for PMSY had very little mass near 0.37, 
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suggesting that the bounding on PMSY at 1/e, as imposed by the parameterization of the 
production model (Eq. 3), was not an issue. Overall, the observed data appeared to contain 
enough information to adjust the implied prior estimates for MSY and related quantities.  

Parameter correlations did not indicate a problem in model estimation (Table 13 and Figure 14). 
Correlations were highest (up to 0.68 in magnitude) among carrying capacity, parameters 
affecting the scaling of relative indices (q1 and q2), and the fishery-independent survey (rad). 
Other correlations were less than 0.35 in magnitude.  

5.2. Stock Status 

Production model estimates indicated that HMSY was 6.9% and that BMSY was 15.4 million 
pounds of exploitable Deep 7 bottomfish biomass with an associated MSY of 1.048 million 
pounds (Table 10).  

Mean estimates of the MSY-based biological reference points of maximum sustainable yield for 
the reported catch (MSY ± one standard error, expressed in units of reported catch), the harvest 
rate to produce MSY (HMSY ± one standard error), and the exploitable biomass to produce MSY 
(BMSY ± one standard error) were: 

1) MSY = 509 thousand pounds (± 233 thousand pounds) for reported catch 
2) HMSY = 6.9% (± 2.6%) 
3) BMSY = 15.4 million pounds (± 4.9 million pounds).  

Deep 7 bottomfish biomass exhibited a long-term decline from high values in the 1960s to lower 
values around BMSY in the mid-1970s (Table 14 and Figure 15). Exploitable biomass fluctuated 
just above BMSY from the late 1970s through the early 1980s, exhibited a small peak during the 
late 1980s, and steadily increased from 1991 through 2015 (Figure 15). Harvest rates were 
relatively low from the mid-1950s through 1970, increased to a peak in 1989, steadily declined 
to the mid-2000s, and have increased slightly since (Table 14 and Figure 16). Harvest rates were 
greater than HMSY in the late-1980s. 

Baseline model results for the MHI Deep 7 bottomfish complex indicated that the stock was not 
overfished in 2015 (B2015/BMSY=1.31, Table 14; Figures 15 and 17) and that the stock complex 
was not experiencing overfishing (H2015/HMSY=0.51, Table 14; Figures 16 and 17). In fishing 
year 2015, there was a 16% probability that exploitable biomass exceeded the limit of 
0.844*BMSY and a 17% chance that the harvest rate exceeded HMSY. As a result, the Deep 7 
bottomfish stock complex was categorized as not overfished and not experiencing overfishing in 
2015.  

5.3. Stock Projections 

The constant 5-year catch projection scenarios showed the distribution of outcomes in 
probability of overfishing, biomass, harvest rates, and probability of depletion of Deep 7 
bottomfish that would likely occur under alternative reported catch scenarios in the MHI during 
2018-2022 (Tables 15 and 16; Figures 18-21). Projections indicated that the Deep 7 reported 
catch in 2015 that would produce approximately 50% chance of overfishing for each year from 
2018 through 2022 was between 558 to 604 thousand pounds (Table 15; Figure 18). For 
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comparison, the smallest Deep 7 reported catch that would lead to a roughly 40% chance of 
overfishing was 518 thousand pounds through 2018, 508 thousand pounds through 2019, 500 
thousand pounds through 2020, 492 thousand pounds through 2021 and 490 thousand pounds 
through 2022 (Table 15; Figure 18). The reported catch to achieve a lower risk of overfishing 
(P*=25%) from 2018 through 2022 varied across years from 378 to 382 thousand pounds 
(Tables 15 and 16). 

5.4. Retrospective Analysis 

Retrospective analysis of the estimated biomass and harvest rates from the assessment model 
indicated that model outputs did not exhibit substantial retrospective patterns in biomass (Figure 
22.1) or harvest rate (Figure 22.2). The retrospective pattern for estimates of biomass was 
slightly positive, with successive terminal biomass estimates overestimating by about 7% as new 
years of data were added (Mohn’s rho = 0.336; Figure 22.1). Excluding the biomass estimate 
from the fishery-independent survey for the retrospective analysis scaled biomass upward 
compared to the base case model. The corresponding pattern for harvest rates was slightly 
negative, representing an underestimate in harvest rate by about 4% as new years of data were 
added (Mohn’s rho = 0.203; Figure 22.2). 

5.5. Sensitivity Analyses 

Sensitivity of model results varied depending on which parameters or model assumptions were 
being assessed, and which model result was being compared. Model results were sensitive to 
assumed prior distributions for the parameters R, K, M, P1, rad, and prior modes for process and 
observation error; alterative unreported catch ratio scenarios; alternative uniform prior 
distributions for process and observation errors; and time-varying catchability. In particular, the 
status for the overfishing reference point (H2015/HMSY) changed compared to the base case model 
under sensitivities for low R and very high prior modes for process and observation error. Model 
results were not sensitive to changes in unreported catch error, nor were they very sensitive to 
the removal of the fishery-independent survey estimate. Details on each sensitivity are provided 
below and summarized in Table 17.  

Sensitivity to alternative prior distribution for carrying capacity (K) 

Model results were sensitive to the assumed prior mean for carrying capacity (Figures 23.1 and 
23.2). The sensitivity analysis indicated that estimates of exploitable biomass were scaled with the 
prior mean for K (Figure 23.1). Assuming a higher prior mean for K resulted in greater estimates 
of biomass (Figure 23.1) and reduced harvest rate estimates (Figure 23.2). When the mean prior 
for K changed by 25% and 50%, the posterior estimate for the parameter K changed by about 13% 
and 27%, respectively (Table 17). The posterior estimates for intrinsic growth rate (R) were 
inversely related to estimates of K (Table 17). When the prior for K was reduced, estimates for 
HMSY increased and estimates for BMSY declined (Table 17). Subsequently, the probability of 
overfishing and the probability of being overfished in 2015 declined in scenarios when the prior 
mean for K was reduced and increased in scenarios when the prior for K was increased (Table 17). 
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Sensitivity to alternative prior distribution for intrinsic growth rate (R)  

Model results were sensitive to assumed mean prior values for intrinsic growth rate (Figures 24.1 
and 24.2). Assuming a higher prior mean for R resulted in reduced estimates of biomass (Figure 
24.1) and increased harvest rate estimates (Figure 24.2). When the mean prior for R changed by -
50%, 50%, and 150%, the posterior estimate for the parameter R also changed by about -50%, 
50%, and 150%, respectively (Table 17). When the prior mean for R was increased, estimates for 
BMSY declined and estimates for HMSY increased, leading to reduced probabilities of overfishing 
and reduced probabilities of the stock being overfished in 2015 (Table 17). When the prior mean 
for R was decreased by 50%, which was the bound between the low and very low productivity 
categories presented in Musick (1999), the probability of overfishing and being overfished in 
2015 increased 227% and by 109%, respectively, and the status for the overfishing reference point 
changed from that of the base case scenario (Table 17).  

Sensitivity to alternative prior distribution for production model shape parameter (M)  

Model results were less sensitive to the assumed mean prior for the shape parameter compared to 
the mean priors for other parameters (Figures 25.1 and 25.2). As assumed prior mean for M 
increased, estimates of exploitable biomass declined (Figure 25.1), and estimates of harvest rate 
increased minimally (Figure 25.2). When the mean prior for M changed by 25%, the posterior 
estimate for the parameter M changed by about 10 to 15% (Table 17). Increasing the prior mean 
by 50% led to an increase in the posterior estimate of about 20%, whereas a 50% decrease in the 
prior mean resulted in about a 35% decrease in the posterior estimate (Table 17). Changing the 
prior mean by 25% and 50% resulted in relatively small changes to estimates of other model 
parameters (Table 17). 

Sensitivity to alternative prior distribution for initial proportion of carrying capacity (P1) 

Model results were sensitive to the assumed prior mean for initial proportion of carrying 
capacity. Estimates of biomass were positively related to the assumed prior mean for P1, whereas 
harvest rates were inversely related to the assumed prior mean for P1 (Figures 26.1 and 26.2). 
Estimates of K were inversely related to prior mean values for P1 (Table 17). As the mean prior 
for P1 changed by 25%, the posterior estimate for the parameter P1 changed by about 20% (Table 
17). Increasing the prior mean by 50% led to an increase in the posterior estimate increased by 
about 38%, whereas a 50% decrease in the prior mean resulted in about a 46% decrease in the 
posterior estimate (Table 17). As the prior mean for P1 increased, the estimated probabilities of 
overfishing and the stock being overfished in 2015 declined at most 34%. As the prior mean for 
P1 decreased, the estimated probabilities of overfishing and the stock being overfished in 2015 
increased by more than 122% (Table 17).  

Sensitivity to alternative prior distribution for observation error variances (τi2) 

Model results were sensitive to the assumed prior mode for observation error variances (Table 
17; Figures 27.1 and 27.2). The prior mean for τi2 varied nearly 100-fold; however, the largest 
change for model parameters R, K, and M was never greater than 27% (Table 17). Most of the 
effect of changing the prior for observation errors was in the probability of overfishing and the 
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stock being overfishing in 2015, which increased 169% and 200%, respectively, when the prior 
mean was increased 100-fold (Table 17). Under a 100-fold increase to the mode of observation 
error, the status of the overfished reference point changed compared to the base case model 
(Table 17). Estimates of biomass increased by about 65% towards the center of the time series 
for the scenario with a 100-fold increase in τi2 but were more similar towards the end of the time 
series (Figure 27.1).  

Sensitivity to alternative prior distribution for process error variance (σ2) 

Model results were sensitive to changes in the assumed prior mean for σ2 when varied by a factor 
of 0.01, 0.1, or 10 (Table 17; Figures 28.1 and 28.2). However, posterior estimates for some 
parameters were sensitive when the prior for σ2 was increased by a factor of 100 (Table 17). 
Specifically, increasing the prior 100-fold resulted in a 48% reduction in the posterior mean 
estimate of M and a 232% increase in the estimated probability of overfishing in 2015. This  
resulted in a change in overfishing status compared to the base case model (Table 17). When 
increasing σ2 100-fold, sensitivity of annual estimates of biomass to increases in σ2 were most 
pronounced towards the early part of the time series (Figure 28.1), and annual estimates of 
harvest rate towards the end of the time series were sensitive (Figure 28.2). 

Sensitivity to use of alternative unreported catch ratios (U) 

Model results were sensitive to Catch Scenarios. Model parameters were more sensitive to Catch 
Scenarios I and IV than II and III (Figures 29.1 and 29.2). Estimates of R, K, M, and P1 changed 
by 0-5% at most for Catch Scenarios II and III compared to 33% for scenarios I and IV (Table 
17). Estimates of derived quantities (MSY, BMSY, and HMSY) changed more for Catch Scenarios I 
and IV than for scenarios II and III.  Estimates changed by up to 29% for Catch Scenario I and 
46% for scenario IV compared to no more than 10% for scenarios II and III. This appeared 
reasonable given that Catch Scenarios I (highest unreported catch) and IV (no unreported catch) 
were most extreme compared to the baseline scenario. However, estimates of biomass and 
harvest rate in 2015 changed comparably in magnitude among all Catch Scenarios. Estimates for 
the probability of being overfished and probability of overfishing in 2015 were also similar in 
magnitude among all Catch Scenarios, although for scenario II probabilities declined, but 
increased for other scenarios (Table 17). 

Sensitivity to alternative error distributions for unreported catch ratio 

Model results were not sensitive to the range of uncertainty in estimates of unreported catch 
(Table 17; Figures 30.1 and 30.2). Increasing the bounds on the uniform distribution to [0.4, 1.6] 
and decreasing them to [0.9999, 1.0001] had little effect on parameter estimates and derived 
quantities (Table 17). Similarly, parameter estimates were only marginally different after 
directional increases and decreases in average catch error of 25% (Table 17).  

Sensitivity to alternative parameterization of catchability (qi) 

Model results were sensitive to the inclusion of time-varying catchability as a random walk. The 
temporal pattern in biomass estimates did not match the CPUE pattern as closely as for the base 
case model (Figure 31.1), but because of time-varying catchability, improved the fit to CPUE 
data. The greatest changes in parameter estimates occurred for estimates of carrying capacity (K; 
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29% increase), shape parameter (M; 26% decrease), and estimates of the probability of 
overfishing and being overfished in 2015 (71% and 65% increases, respectively) (Table 17). 
Estimates of random walk catchability were similar in scale to the corresponding constant 
catchability from the base case, with mean estimates over time of q1,T and q2,T 7% and 6% less 
than q1 and q2, respectively. Estimated biomass nearly doubled (and estimated harvest rate 
halved) towards the center of the time series when catchability was lowest. Estimates of biomass 
and harvest were more similar towards the end of the time series when catchability was 
increasing, likely as a consequence of the model fitting to the survey data point (Figures 31.1 and 
31.2).  

Sensitivity to use of uniform prior for observation and process error variances 

Model results were sensitive to using a uniform prior for observation and process error rather 
than the default inverse gamma distribution, but less sensitive than other model parameters and 
structural assumptions. Time series of estimated biomass (Figure 32.1) and estimated harvest 
(Figure 32.2) were similar to the base case. Changes in parameter estimates were generally less 
than 10%; however, the probability of overfishing in 2015 declined by 90% and the probability 
of the stock being overfished in 2015 declined by 91% (Table 17).  

Sensitivity to exclusion of the fishery-independent survey 

Model results were not very sensitive to the exclusion of the fishery-independent survey (Figures 
33.1 and 33.2; Table 17). Estimates of biomass increased by about 6 to 10% when the survey 
was excluded (Figure 33.1; Table 17). The increase in biomass was accompanied by a slight 
increase in variation in the estimates. The CV for annual biomass estimates increased by 7-17% 
and the 95% credible interval width for biomass increased 15-20% for the model with the survey 
excluded (Figure 33.1). The slight increases in biomass estimates resulted in decreased estimates 
of mean harvest rate for the scenario with the survey excluded and minimal changes to variation 
around harvest rates (Figure 33.2). 

Sensitivity to uncertainty in the effective radius for the fishery-independent survey 

Model results were sensitive to reducing the CV for the effective radius of the fishery-
independent survey from 0.25 to 0.01 (Figure 34.1 and 34.2; Table 17). Estimates of biomass 
decreased by 16-37% when the uncertainty in the survey radius was reduced, with the magnitude 
of the difference increasing through time (Figure 34.1). The decreases in biomass estimates 
resulted in increased estimates of mean harvest rate relative to the base case (Figure 34.2). 
Decreasing the uncertainty in the effective radius led to a decrease in the amount of variation in 
biomass estimates, with CVs decreasing by 6 to 38% relative to the base case (Figure 34.1). The 
width of 95% credible intervals decreased by 21 to 61% relative to the base case. PK was most 
sensitive to the CV for the radius, decreasing by about 15% relative to the base case. 
Probabilities of overfishing and being overfished increased by 102% and 113% relative to the 
base case (Table 17). 

5.6. Summary Attributes for Single Species Model 

Diagnostics indicated that the MCMC simulation to estimate the posterior distribution of 
production model parameters for the opakapaka model converged, with the exception of the 
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Geweke diagnostic for process error from the third chain (Table A3). The stationarity test of 
process error for the third chain only passed if the first 10% of samples were removed. As was 
the case for the model of the Deep 7 complex, this was not considered a serious violation and all 
samples were used for summarizing model results for opakapaka. Residuals indicated that the 
production model provided a good fit to the standardized CPUE observations and that residuals 
were normal and untrending with constant variance for the at least the recent time period 
(Figures A3-A6). Residuals for the early time period were normal and untrending but had non-
constant variance. Posterior means of model parameters were similar to those from the Deep 7 
bottomfish model (Table 18). Parameters and model quantities related to the model scale, 
including K, BMSY and MSY, were approximately proportional to the corresponding value in the 
Deep 7 bottomfish model by 65%. This was near the ratio of the estimate of opakapaka biomass 
to Deep 7 biomass from the fishery-independent survey (68%) and also the average ratio for 
opakapaka to Deep 7 total catch by weight over all years (67%). For other parameters and 
derived quantities, the absolute difference between posterior means for the opakapaka model and 
the Deep 7 model were no greater than 11%, and averaged only 3%. Posterior means and 95% 
credible intervals for biomass scaled to 68% of the biomass for the Deep 7 bottomfish complex 
over all years (Figure 35).  Posterior means of harvest rates for opakapaka were similar to those 
for the Deep 7 complex (Figure 36). Given the slight changes in the posterior means of biomass 
and harvest rate from the Deep 7 model compared to reference points, the status for opakapaka 
was similar to the status for Deep 7 bottomfish as a complex (Figure 37).  

6. DISCUSSION 

The Deep 7 bottomfish stock complex in the Main Hawaiian Islands was categorized as not 
being overfished and not experiencing overfishing in 2015. The 2018 assessment produced 
estimates of biological references points, biomasses, and harvest rates through recent decades 
that were higher than previous assessments for Deep 7 bottomfish (Brodziak et al. 2011; 2014). 
The average estimated biomass from 1990 through 2013 for the 2014 assessment update used for 
management was 13.18 million pounds compared to 17.8 million pounds for the 2018 
assessment. For the 2018 assessment, biomass in the late 2000s was even higher than for the 
2014 assessment. The average estimated biomass from 2004 through 2013 for the 2014 
assessment update used for management was 13.6 million pounds versus 18.4 for the 2018 
assessment. As such, projections produced reported catch values corresponding to probabilities 
of overfishing that were higher than those in the 2014 assessment. The amount of reported catch 
that would yield a 50% probability of overfishing was 352 thousand pounds in the 2014 
assessment update used for management compared to 558-604 thousand pounds in the 2018 
benchmark assessment (a 65% increase). The smallest Deep 7 projected reported catch that 
would lead to a roughly P*=40% chance of overfishing was about 490 thousand pounds. Forty 
percent was approximately the risk of overfishing chosen by the WPRFMC for setting the annual 
catch limit (ACL) in 2015-2016 based on the 2014 assessment update used for management. The 
490 thousand pound catch value is 50% greater than the ACL for the 2015-16 fishing season 
(326,000 lbs) and 54% greater than the ACL for the 2016-17 fishing season (318,000 lbs), which 
were based on the 2014 assessment update used for management. The large increase in the 
projected reported catches corresponding to probabilities of overfishing was mainly a function of 
greater biomass at the beginning of the projections. This greater biomass is likely influenced by 
several factors from the base case model (although it is difficult to pinpoint an exact cause), new 
methods for calculating nominal and standardized CPUE, and splitting CPUE into two time 
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series each with unique catchabilities and observation error variances. Other contributing factors 
likely included an increase in the estimate of the production shape parameter (M) and intrinsic 
growth rate (R), reduced variation around estimates of biomass resulting from the inclusion of 
the fishery-independent survey. Another contributing factor is possibly the exclusion of process 
error from the projected biomass trajectory, although this exclusion is consisted with the 2014 
assessment update used for management, and the directional effect of excluding process error is 
uncertain. An attempt was made to include process error in projections; however, this led to 
changes in the estimates of biomass for 1949-2015 from the base case, which was a consequence 
of the software used.  

Several improvements relative to the previous benchmark assessment were incorporated into the 
2018 benchmark assessment. The data filtering and standardization approaches were improved as 
a result of workshops held with the bottomfish fishery community (Yau 2018). These 
improvements included filtering out records not targeting Deep 7 bottomfish species, accounting 
for multi-day trips, and filtering out records unrepresentative of the fishery. Improvements to 
data standardization included a measure of fisher experience, pounds of uku caught, and wind 
speed and direction. Additionally, data were included on individual license holder for a majority 
of records back to 1949. Due to time constraints, no attempt was made to confirm whether 
similar names were actually the same name. For example, one name with a middle name or 
initial and another without the middle name or initial were treated as different individuals (John 
H. Smith versus John Henry Smith versus John Smith). This practice likely resulted in a higher 
number of fishers being tracked individually than may actually exist in the fishery. Confirming 
whether such names were from the same individual or not would result in an improvement for 
the next assessment, but it is not clear the extent to which this is possible, nor the time 
commitment required. 

The 2018 benchmark assessment was the first assessment of Deep 7 bottomfish to be fitted to 
fishery-independent data. The bottomfish survey that was conducted during 2016 (Ault et al. 
2018) produced an independent estimate for biomass that along with an estimated scaling factor 
was used to anchor the model estimates. Thus, the model was not entirely dependent on reported 
catch and effort and assumed unreporting ratios. The inclusion of the survey and scaling factor 
had a limited effect on changing the model results from a model without the survey information 
included. It did reduce the amount of variation for model estimates and scale biomass estimates 
downward. Using the exact value of the scaling factor applied in Ault et al. (2018) would reduce 
biomass estimates further.  

In this assessment, the uncertainty in the scalar is an important uncertainty in fitting to the survey 
data. The scalar used for the total estimate was based on the assumption that the camera had a 
certain effective radius, based on a combination of technology specifications and scalars from 
other surveys using similar sampling gear, and validated against fishery-dependent data (20.2 m; 
Ault et al. 2018). If the assumed effective radius was smaller, total biomass estimates would be 
higher. Conversely, an assumed radius that was larger would result in a lower total estimate of 
biomass. As described in Ault et al. (2018), the choice of the scalar had support from available 
information, but the exact value remains an uncertainty. This uncertainty was treated explicitly in 
the model by assigning a prior to the radius of a sample from the survey. Nonetheless, there 
remains uncertainty in the conversion factors between gears that was not explicitly accounted for 
within the model. Improving the estimate of the scalar from relative to absolute 
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abundance/biomass in the survey as well as calculating uncertainty in the conversion factors 
between survey gears would improve the next stock assessment. In the future, as a longer time 
series of survey data is used in the model, the survey is expected to have a greater influence on 
model results as the time series of survey data becomes more informative. The certainty around 
the scaling factor is expected to increase, and consequently, the uncertainty around the posterior 
for the radius of a sample (scalar) will likely be reduced.  

The 2018 assessment also included improved assumptions about prior distributions. The 
assessment used a more realistic value for natural mortality that incorporated information on 
longevity for species in the Deep 7 bottomfish complex. This updated estimate of natural 
mortality resulted in a more realistic definition of minimum stock size threshold for biomass, 
although it should be noted that using the previous value does not alter stock status. The 
assessment also used unpublished data from HMRFS on the disposition of catch to inform a 
higher value of uncertainty around unreported catch, although this was not found to be a 
significant uncertainty that affected model results.  

The surplus production model developed for opakapaka produced similar overall results to the 
model for the Deep 7 complex. Results were approximately proportional to the corresponding 
value in the Deep 7 bottomfish model with biomass over all years scaled by 68%.This was 
similar to the ratio of opakapaka to Deep 7 from two data sources: the estimate of opakapaka 
biomass to Deep 7 biomass from the fishery-independent survey (68%) and the proportion of 
total catch of Deep 7 bottomfish comprised of opakapaka (67%). The estimation of a single-
species model is an advancement that addresses recommendations made during the review of the 
initial 2014 assessment update. There was an attempt to incorporate available commercial weight 
data into a structure Stock Synthesis model for opakapaka, but there were challenges with 
incorporating a weight time series that included average rather than individual weights. The 
Stock Synthesis model was therefore not finalized in time for inclusion in this stock assessment. 
Incorporation of commercial weight data into a structured model is a research area that can be 
explored in future benchmark assessments. It remains uncertain whether life history data for the 
other species will be sufficiently informative and available to develop single-species models, 
particularly those that represent a small proportion of the overall catch and are not targeted to the 
extent that opakapaka is. Furthermore, a shift towards single-species assessments would 
necessitate consideration about how to manage on a species-specific level or how to manage a 
complex using only single-species indicators. Several or all 7 species can be caught on a given 
fishing event plus not all fishers are skilled in targeting certain species. Some work on exploring 
management approaches for aggregate and single-species models for Hawaiian bottomfish has 
been done (Bryan 2012), and similar approaches could be used to further inform the management 
process for Deep 7 bottomfish. 
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8. TABLES 

Table 1. List of bottomfish species in the Hawaiian bottomfish management unit species 
complex. The current stock assessment provides an assessment of the status of the set of 
Deep 7 bottomfish species. 

Common name Local name Scientific name Deep7species 
Pink snapper Opakapaka Pristipomoides filamentosus X 
Longtail snapper Onaga Etelis coruscans X 
Squirrelfish snapper Ehu Etelis carbunculus X 
Sea bass Hapuupuu Hyporthodus quernus X 
Grey jobfish Uku Aprion virescens - 
Snapper Gindai Pristipomoides zonatus X 
Snapper Kalekale Pristipomoides sieboldii X 
Blue stripe snapper Taape Lutjanus kasmira - 
Yellowtail snapper Yellowtail kalekale Pristipomoides auricilla - 
Silver jaw jobfish Lehi Aphareus rutilans X 
Amberjack Kahala Seriola dumerili - 
Thick lipped trevally Butaguchi Pseudocaranx dentex - 
Giant trevally White ulua Caranx ignobilis - 
Black jack Black ulua Caranx lugubris - 
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Table 2. Reported catch (units are 1000 pounds) of Deep 7 bottomfish by species in the main 
Hawaiian Islands as reported in the Division of Aquatic Resources Fishery Reporting System 
by fishing year (July 1st – June 30th), 1949-2016. 

Fishing 
year 

Hapuupuu Kalekale Opakapaka Ehu Onaga Lehi Gindai Total 

1949 30.3 37.4 116.9 105.1 63.4 5.8 0.2 359.1 
1950 18.8 30.0 113.8 75.7 60.4 4.6 0.7 304.0 
1951 20.5 32.1 124.3 65.6 72.3 2.8 2.0 319.6 
1952 27.8 45.3 118.8 52.0 44.7 9.5 2.7 300.8 
1953 19.8 32.4 100.6 51.0 49.7 2.8 2.0 258.3 
1954 16.7 40.2 102.5 40.8 65.5 3.9 1.9 271.5 
1955 18.4 28.5 80.8 30.1 61.7 1.1 2.6 223.4 
1956 23.4 33.1 107.2 40.5 69.4 3.8 3.7 281.0 
1957 17.4 29.4 147.2 36.8 76.2 8.7 2.1 317.9 
1958 17.5 17.5 92.6 26.8 52.3 2.4 2.0 211.1 
1959 15.7 19.2 77.8 22.8 65.7 2.1 1.4 204.7 
1960 12.4 18.9 70.6 19.3 39.4 1.6 1.2 163.4 
1961 6.2 19.6 57.1 12.9 32.9 1.0 0.4 130.0 
1962 9.8 16.3 75.4 15.3 48.5 1.6 0.8 167.6 
1963 12.4 18.2 92.4 23.7 60.8 2.7 0.8 211.0 
1964 11.6 23.5 92.5 24.7 47.2 1.0 2.3 202.8 
1965 10.6 15.0 103.6 20.3 60.0 1.3 0.9 211.7 
1966 12.7 13.6 71.4 18.1 65.0 2.0 0.8 183.7 
1967 10.6 9.7 121.2 18.4 70.3 2.4 0.8 233.3 
1968 11.3 7.3 85.1 19.9 69.5 2.2 0.8 196.0 
1969 10.9 4.2 85.9 16.2 53.9 5.8 0.5 177.5 
1970 20.1 5.1 69.7 15.9 43.6 2.7 1.4 158.5 
1971 14.5 4.3 59.1 15.3 39.3 1.8 0.9 135.2 
1972 17.6 8.1 117.9 21.3 59.1 4.4 1.2 229.7 
1973 14.9 5.1 93.4 14.6 35.9 4.5 1.3 169.6 
1974 14.6 4.9 135.3 21.1 43.6 4.9 1.5 225.9 
1975 23.2 6.0 116.2 21.9 45.1 8.5 1.4 222.3 
1976 22.4 7.9 105.4 31.3 80.2 10.3 1.2 258.7 
1977 30.1 8.6 106.3 35.7 84.8 7.3 1.5 274.3 
1978 28.7 10.2 154.6 35.7 66.5 9.8 2.6 308.1 
1979 29.6 9.1 146.0 22.5 53.3 12.1 2.9 275.4 
1980 17.7 14.2 151.1 17.0 31.4 17.8 2.4 251.5 
1981 17.0 9.3 197.4 21.2 42.9 19.9 1.9 309.5 
1982 21.7 10.6 177.7 24.4 66.0 30.0 1.6 332.0 
1983 32.8 15.1 230.5 28.0 72.8 28.5 2.7 410.4 
1984 27.1 13.5 158.7 35.9 86.8 16.8 3.5 342.3 
1985 31.8 22.2 196.9 40.4 163.8 25.5 4.5 485.2 
1986 24.1 24.9 173.3 60.6 196.1 27.7 3.5 510.3 
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Fishing 
year 

Hapuupuu Kalekale Opakapaka Ehu Onaga Lehi Gindai Total 

1987 28.7 28.3 258.2 48.5 174.2 38.7 3.2 579.8 
1988 10.3 18.1 300.7 41.2 156.5 38.2 2.0 567.0 
1989 13.5 11.0 307.7 37.4 143.7 44.7 1.7 559.6 
1990 14.2 15.5 209.9 37.3 141.6 34.9 2.8 456.1 
1991 15.0 18.3 135.5 30.8 103.1 19.0 3.5 325.1 
1992 15.0 27.6 171.3 31.6 91.7 17.1 5.0 359.2 
1993 12.0 16.9 133.7 23.7 55.4 11.1 3.6 256.3 
1994 10.3 17.3 173.4 22.9 68.3 11.6 3.7 307.5 
1995 16.1 19.7 188.3 25.8 69.0 13.7 4.0 336.6 
1996 9.8 18.6 139.8 29.7 65.5 9.7 2.9 276.1 
1997 14.1 22.8 160.5 26.2 61.4 11.9 3.0 299.8 
1998 12.7 24.4 149.7 26.8 70.9 9.4 3.4 297.2 
1999 9.9 12.1 103.7 19.8 59.8 8.7 2.3 216.3 
2000 13.1 16.0 166.1 26.8 72.5 11.1 3.2 308.7 
2001 15.5 15.6 125.0 26.5 63.2 11.5 3.6 261.0 
2002 9.0 11.3 103.6 16.9 60.0 10.8 2.4 214.1 
2003 9.4 21.5 127.7 16.3 68.7 8.6 2.1 254.3 
2004 7.9 8.0 87.3 19.5 75.9 5.0 2.1 205.6 
2005 10.4 7.9 104.4 23.1 89.8 6.9 2.0 244.4 
2006 7.2 5.3 72.1 19.3 74.7 6.3 1.6 186.6 
2007 7.5 6.1 92.4 20.7 85.9 8.4 2.3 223.3 
2008 6.6 5.5 96.2 18.2 56.2 11.0 2.8 196.6 
2009 7.9 9.6 132.6 24.6 59.5 16.6 3.6 254.3 
2010 8.2 8.2 105.4 24.4 57.2 6.0 2.8 212.2 
2011 8.2 9.9 148.4 24.8 67.6 11.6 3.1 273.6 
2012 9.1 11.2 105.2 27.2 52.6 7.9 3.7 216.9 
2013 10.5 12.3 96.0 30.8 66.9 13.0 3.4 232.9 
2014 10.6 18.8 160.8 32.2 75.7 8.4 3.8 310.2 
2015 9.3 17.7 154.6 32.1 79.9 12.5 2.8 308.9 
2016 10.5 13.6 140.7 32.7 73.7 7.8 2.0 281.1 
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Table 3. Ratios of unreported catch to reported catch of Deep 7 bottomfish in the main 
Hawaiian Islands by fishing year (July 1st – June 30th), 1949-2016, for the base case model 
scenario. 

Fishing 
year 

Hapuupuu Kalekale Opakapaka Ehu Onaga Lehi Gindai 

1949 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1950 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1951 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1952 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1953 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1954 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1955 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1956 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1957 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1958 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1959 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1960 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1961 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1962 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1963 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1964 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1965 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1966 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1967 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1968 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1969 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1970 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1971 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1972 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1973 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1974 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1975 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1976 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1977 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1978 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1979 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1980 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1981 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1982 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1983 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1984 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1985 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1986 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
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Fishing 
year 

Hapuupuu Kalekale Opakapaka Ehu Onaga Lehi Gindai 

1987 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1988 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1989 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1990 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1991 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1992 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1993 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1994 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1995 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1996 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1997 1.02 0.03 2.87 1.11 0.73 0.04 0.15 
1998 0.93 0.08 2.69 0.94 0.59 0.05 0.24 
1999 0.85 0.13 2.51 0.77 0.46 0.06 0.33 
2000 0.76 0.18 2.33 0.59 0.32 0.08 0.43 
2001 0.68 0.23 2.15 0.42 0.19 0.09 0.52 
2002 0.59 0.28 1.97 0.25 0.05 0.10 0.61 
2003 0.59 0.28 1.97 0.25 0.05 0.10 0.61 
2004 0.59 0.28 1.97 0.25 0.05 0.10 0.61 
2005 0.59 0.28 1.97 0.25 0.05 0.10 0.61 
2006 0.59 0.28 1.97 0.25 0.05 0.10 0.61 
2007 0.59 0.28 1.97 0.25 0.05 0.10 0.61 
2008 0.59 0.28 1.97 0.25 0.05 0.10 0.61 
2009 0.59 0.28 1.97 0.25 0.05 0.10 0.61 
2010 0.59 0.28 1.97 0.25 0.05 0.10 0.61 
2011 0.59 0.28 1.97 0.25 0.05 0.10 0.61 
2012 0.59 0.28 1.97 0.25 0.05 0.10 0.61 
2013 0.59 0.28 1.97 0.25 0.05 0.10 0.61 
2014 0.59 0.28 1.97 0.25 0.05 0.10 0.61 
2015 0.59 0.28 1.97 0.25 0.05 0.10 0.61 
2016 0.59 0.28 1.97 0.25 0.05 0.10 0.61 
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Table 4. Unreported catch (units are 1000 pounds) of Deep 7 bottomfish by species in the 
main Hawaiian Islands by fishing year (July 1st – June 30th), 1949-2016, as calculated from 
reported catch (Table 2) and unreported:reported catch ratios (Table 3). 

Fishing 
year 

Hapuupuu Kalekale Opakapaka Ehu Onaga Lehi Gindai Total 

1949 30.9 1.1 335.4 116.7 46.3 0.2 0.0 530.7 
1950 19.1 0.9 326.5 84.0 44.1 0.2 0.1 475.0 
1951 20.9 1.0 356.8 72.8 52.7 0.1 0.3 504.7 
1952 28.3 1.4 341.0 57.8 32.6 0.4 0.4 461.8 
1953 20.2 1.0 288.6 56.6 36.3 0.1 0.3 403.1 
1954 17.0 1.2 294.2 45.3 47.8 0.2 0.3 406.0 
1955 18.8 0.9 232.0 33.5 45.0 0.0 0.4 330.5 
1956 23.9 1.0 307.7 44.9 50.6 0.2 0.6 428.8 
1957 17.8 0.9 422.6 40.8 55.6 0.3 0.3 538.3 
1958 17.9 0.5 265.6 29.8 38.2 0.1 0.3 352.4 
1959 16.0 0.6 223.3 25.3 47.9 0.1 0.2 313.4 
1960 12.7 0.6 202.5 21.5 28.8 0.1 0.2 266.2 
1961 6.3 0.6 163.8 14.4 24.0 0.0 0.1 209.2 
1962 10.0 0.5 216.3 17.0 35.4 0.1 0.1 279.4 
1963 12.7 0.5 265.2 26.3 44.4 0.1 0.1 349.3 
1964 11.8 0.7 265.6 27.4 34.4 0.0 0.3 340.4 
1965 10.8 0.4 297.2 22.5 43.8 0.1 0.1 375.0 
1966 13.0 0.4 204.9 20.1 47.5 0.1 0.1 286.1 
1967 10.8 0.3 347.8 20.4 51.3 0.1 0.1 430.9 
1968 11.5 0.2 244.2 22.1 50.8 0.1 0.1 328.9 
1969 11.2 0.1 246.7 18.0 39.4 0.2 0.1 315.6 
1970 20.5 0.2 200.0 17.6 31.8 0.1 0.2 270.4 
1971 14.8 0.1 169.7 17.0 28.7 0.1 0.1 230.5 
1972 18.0 0.2 338.2 23.7 43.2 0.2 0.2 423.6 
1973 15.2 0.2 267.9 16.2 26.2 0.2 0.2 326.0 
1974 14.9 0.1 388.3 23.4 31.8 0.2 0.2 459.1 
1975 23.7 0.2 333.4 24.3 33.0 0.3 0.2 415.1 
1976 22.8 0.2 302.5 34.7 58.6 0.4 0.2 419.4 
1977 30.7 0.3 305.2 39.7 61.9 0.3 0.2 438.2 
1978 29.2 0.3 443.8 39.6 48.6 0.4 0.4 562.3 
1979 30.1 0.3 419.1 25.0 38.9 0.5 0.4 514.2 
1980 18.1 0.4 433.5 18.9 22.9 0.7 0.4 494.9 
1981 17.3 0.3 566.4 23.5 31.3 0.8 0.3 639.9 
1982 22.1 0.3 510.1 27.1 48.2 1.2 0.2 609.2 
1983 33.4 0.5 661.5 31.1 53.2 1.1 0.4 781.2 
1984 27.6 0.4 455.6 39.9 63.4 0.7 0.5 588.0 
1985 32.4 0.7 565.0 44.9 119.6 1.0 0.7 764.3 
1986 24.6 0.7 497.5 67.3 143.2 1.1 0.5 734.9 
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Fishing 
year 

Hapuupuu Kalekale Opakapaka Ehu Onaga Lehi Gindai Total 

1987 29.3 0.8 741.0 53.8 127.2 1.5 0.5 954.2 
1988 10.5 0.5 862.9 45.7 114.2 1.5 0.3 1035.8 
1989 13.7 0.3 883.0 41.5 104.9 1.8 0.3 1045.4 
1990 14.4 0.5 602.3 41.4 103.4 1.4 0.4 763.9 
1991 15.3 0.5 388.9 34.2 75.3 0.8 0.5 515.4 
1992 15.3 0.8 491.7 35.0 66.9 0.7 0.7 611.2 
1993 12.2 0.5 383.6 26.3 40.5 0.4 0.5 464.0 
1994 10.5 0.5 497.6 25.4 49.9 0.5 0.6 584.9 
1995 16.4 0.6 540.4 28.6 50.4 0.5 0.6 637.7 
1996 10.0 0.6 401.1 33.0 47.8 0.4 0.4 493.4 
1997 14.3 0.7 460.6 29.0 44.9 0.5 0.5 550.4 
1998 11.8 2.0 402.6 25.2 42.1 0.5 0.8 485.0 
1999 8.4 1.6 260.2 15.1 27.4 0.6 0.8 314.1 
2000 10.0 2.9 387.1 15.9 23.3 0.8 1.3 441.4 
2001 10.5 3.6 268.8 11.2 11.8 1.0 1.9 308.7 
2002 5.3 3.2 204.1 4.2 3.0 1.1 1.5 222.3 
2003 5.6 6.0 251.5 4.1 3.4 0.9 1.3 272.8 
2004 4.7 2.2 171.9 4.9 3.8 0.5 1.3 189.2 
2005 6.1 2.2 205.6 5.8 4.5 0.7 1.2 226.2 
2006 4.2 1.5 142.1 4.8 3.7 0.6 1.0 158.0 
2007 4.4 1.7 182.0 5.2 4.3 0.8 1.4 199.9 
2008 3.9 1.5 189.5 4.6 2.8 1.1 1.7 205.1 
2009 4.7 2.7 261.2 6.1 3.0 1.7 2.2 281.5 
2010 4.9 2.3 207.6 6.1 2.9 0.6 1.7 226.0 
2011 4.8 2.8 292.4 6.2 3.4 1.2 1.9 312.6 
2012 5.4 3.1 207.3 6.8 2.6 0.8 2.2 228.2 
2013 6.2 3.4 189.2 7.7 3.3 1.3 2.0 213.2 
2014 6.2 5.3 316.7 8.1 3.8 0.8 2.3 343.2 
2015 5.5 4.9 304.6 8.0 4.0 1.2 1.7 330.0 
2016 6.2 3.8 277.2 8.2 3.7 0.8 1.2 301.1 
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Table 5. Total catch (units are 1000 pounds) of Deep 7 bottomfish by species in the main 
Hawaiian Islands by fishing year (July 1st – June 30th), 1949-2016, as calculated from the sum 
of reported catch (Table 2) and unreported catch (Table 4). 

Fishing 
year 

Hapuupuu Kalekale Opakapaka Ehu Onaga Lehi Gindai Total 

1949 61.2 38.6 452.3 221.7 109.7 6.0 0.3 889.8 
1950 37.9 30.9 440.3 159.6 104.6 4.8 0.8 778.9 
1951 41.5 33.1 481.1 138.4 125.0 2.9 2.2 824.3 
1952 56.1 46.6 459.8 109.8 77.3 9.8 3.2 762.6 
1953 40.0 33.4 389.2 107.6 86.0 2.9 2.2 661.4 
1954 33.7 41.4 396.7 86.1 113.4 4.0 2.2 677.4 
1955 37.1 29.4 312.8 63.6 106.8 1.2 3.0 553.9 
1956 47.2 34.1 415.0 85.4 120.0 4.0 4.2 709.8 
1957 35.2 30.3 569.8 77.6 131.8 9.1 2.5 856.3 
1958 35.4 18.0 358.2 56.6 90.4 2.5 2.3 563.4 
1959 31.7 19.7 301.1 48.1 113.6 2.2 1.7 518.1 
1960 25.1 19.4 273.1 40.8 68.2 1.7 1.4 429.6 
1961 12.5 20.1 220.9 27.3 56.9 1.0 0.5 339.2 
1962 19.8 16.8 291.7 32.2 84.0 1.7 0.9 447.0 
1963 25.1 18.8 357.7 50.0 105.1 2.8 0.9 560.3 
1964 23.4 24.2 358.1 52.2 81.6 1.0 2.7 543.2 
1965 21.5 15.4 400.8 42.8 103.9 1.3 1.1 586.7 
1966 25.7 14.0 276.4 38.2 112.5 2.1 1.0 469.8 
1967 21.5 9.9 469.0 38.7 121.7 2.5 0.9 664.1 
1968 22.8 7.5 329.2 41.9 120.3 2.3 0.9 525.0 
1969 22.1 4.3 332.6 34.2 93.3 6.0 0.5 493.1 
1970 40.5 5.3 269.7 33.5 75.4 2.8 1.7 428.9 
1971 29.3 4.5 228.8 32.3 67.9 1.9 1.0 365.7 
1972 35.6 8.3 456.1 45.0 102.3 4.6 1.4 653.3 
1973 30.1 5.3 361.3 30.7 62.0 4.7 1.5 495.6 
1974 29.5 5.0 523.6 44.6 75.5 5.1 1.7 684.9 
1975 46.9 6.1 449.6 46.2 78.1 8.8 1.6 637.4 
1976 45.2 8.1 407.9 66.0 138.8 10.7 1.4 678.2 
1977 60.8 8.9 411.5 75.4 146.6 7.6 1.8 712.6 
1978 57.9 10.5 598.5 75.3 115.1 10.2 2.9 870.4 
1979 59.7 9.3 565.1 47.5 92.1 12.6 3.3 789.6 
1980 35.8 14.6 584.6 35.9 54.3 18.5 2.7 746.4 
1981 34.3 9.6 763.8 44.6 74.3 20.7 2.1 949.4 
1982 43.8 10.9 687.8 51.6 114.1 31.2 1.9 941.2 
1983 66.2 15.6 892.0 59.1 126.0 29.6 3.1 1191.6 
1984 54.7 13.9 614.3 75.8 150.1 17.4 4.1 930.3 
1985 64.3 22.9 761.9 85.3 283.4 26.6 5.2 1249.4 
1986 48.6 25.7 670.9 128.0 339.3 28.8 4.0 1245.2 
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Fishing 
year 

Hapuupuu Kalekale Opakapaka Ehu Onaga Lehi Gindai Total 

1987 58.1 29.1 999.2 102.3 301.4 40.2 3.7 1534.0 
1988 20.8 18.6 1163.6 86.9 270.7 39.8 2.3 1602.7 
1989 27.2 11.3 1190.6 78.8 248.6 46.5 1.9 1605.0 
1990 28.6 16.0 812.2 78.8 245.0 36.3 3.2 1220.0 
1991 30.2 18.8 524.3 65.0 178.4 19.7 4.0 840.5 
1992 30.3 28.4 663.0 66.6 158.7 17.7 5.7 970.5 
1993 24.2 17.4 517.2 50.0 95.9 11.5 4.1 720.3 
1994 20.9 17.8 670.9 48.3 118.1 12.1 4.3 892.4 
1995 32.6 20.3 728.8 54.4 119.4 14.2 4.6 974.3 
1996 19.9 19.2 540.9 62.7 113.3 10.1 3.3 769.4 
1997 28.4 23.5 621.1 55.2 106.3 12.3 3.5 850.3 
1998 24.5 26.4 552.3 52.0 112.9 9.9 4.2 782.2 
1999 18.3 13.7 363.9 34.9 87.3 9.2 3.1 530.4 
2000 23.2 18.8 553.3 42.7 95.8 11.9 4.5 750.2 
2001 25.9 19.1 393.8 37.7 75.0 12.5 5.5 569.6 
2002 14.3 14.5 307.7 21.1 63.1 11.8 3.9 436.4 
2003 15.0 27.6 379.2 20.4 72.2 9.4 3.4 527.1 
2004 12.6 10.2 259.1 24.4 79.7 5.5 3.3 394.8 
2005 16.5 10.1 310.0 28.9 94.3 7.6 3.2 470.6 
2006 11.4 6.8 214.2 24.1 78.5 6.9 2.6 344.5 
2007 12.0 7.8 274.4 25.9 90.2 9.2 3.7 423.2 
2008 10.5 7.1 285.7 22.8 59.0 12.1 4.6 401.8 
2009 12.6 12.3 393.8 30.7 62.5 18.2 5.8 535.9 
2010 13.1 10.4 313.0 30.5 60.1 6.6 4.5 438.2 
2011 13.0 12.7 440.8 31.0 71.0 12.7 5.0 586.2 
2012 14.5 14.4 312.5 34.0 55.3 8.6 5.9 445.2 
2013 16.8 15.8 285.2 38.5 70.2 14.3 5.4 446.1 
2014 16.8 24.0 477.4 40.3 79.4 9.3 6.1 653.4 
2015 14.8 22.6 459.2 40.1 83.9 13.7 4.5 638.9 
2016 16.8 17.4 417.9 40.9 77.4 8.6 3.2 582.2 
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Table 6. Proportion of records with individual name information before and after using the 
new database to link names and license numbers. The dataset used for CPUE analysis in this 
2018 assessment included the new name information. 

Fishing 
year 

After 
names 
added 

Before 
names 
added 

 Fishing 
year 

After 
names 
added 

Before 
names 
added 

1948 0.7 0.0  1982 0.9 0.0 
1949 0.8 0.0  1983 1.0 0.0 
1950 0.7 0.0  1984 0.9 0.0 
1951 0.7 0.0  1985 0.9 0.0 
1952 0.8 0.0  1986 1.0 0.0 
1953 0.6 0.0  1987 1.0 0.0 
1954 0.3 0.0  1988 1.0 0.0 
1955 0.3 0.0  1989 1.0 0.0 
1956 0.3 0.0  1990 1.0 0.0 
1957 0.3 0.0  1991 1.0 0.0 
1958 0.3 0.0  1992 1.0 0.0 
1959 0.5 0.0  1993 1.0 0.0 
1960 0.6 0.0  1994 1.0 0.0 
1961 0.7 0.0  1995 1.0 0.0 
1962 0.6 0.0  1996 1.0 0.0 
1963 0.6 0.0  1997 1.0 0.0 
1964 0.7 0.0  1998 1.0 0.0 
1965 0.6 0.0  1999 1.0 0.0 
1966 0.6 0.0  2000 1.0 0.0 
1967 0.6 0.0  2001 1.0 0.0 
1968 0.6 0.0  2002 1.0 0.0 
1969 0.6 0.0  2003 1.0 0.7 
1970 0.7 0.0  2004 1.0 1.0 
1971 0.6 0.0  2005 1.0 1.0 
1972 0.7 0.0  2006 1.0 1.0 
1973 0.6 0.0  2007 1.0 1.0 
1974 0.7 0.0  2008 1.0 1.0 
1975 0.6 0.0  2009 1.0 1.0 
1976 0.0 0.0  2010 1.0 1.0 
1977 1.0 0.0  2011 1.0 1.0 
1978 1.0 0.0  2012 1.0 1.0 
1979 1.0 0.0  2013 1.0 1.0 
1980 1.0 0.0  2014 1.0 1.0 
1981 1.0 0.0  2015 1.0 1.0 
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Table 7. List of predictors that were considered in model selection for the Bernoulli and 
Lognormal processes in the early (1948-2003) and recent (2003-2015) time periods. Dashes (-) 
represent variables that were not available, while “Errors” represents variables that resulted 
in convergence errors when included during model selection. 

Model Bernoulli Bernoulli Lognormal Lognormal 
Time period 1948-2003 2003-2015 1948-2003 2003-2015 

Predictor      
Year Y Y Y Y 
Fisher  Errors Errors Y Y 
Area Y Y Y Y 
Region Y Y Y Y 
Quarter Y Y Y Y 
Ln(Cumulative experience) Y Y Y Y 
Sqrt(Pounds of uku) - Y Y Y 
Wind speed - Y - Y 
Wind speed squared - Y - Y 
Wind direction - Y - Y 
Area:Quarter Y Y Y Y 
Year:Area Errors Errors Errors Y 
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Table 8. Summary of log likelihood values and reduction in AIC (∆AIC = AIC previous model –
AIC proposed model) during model selection for the best-fit model for the Bernoulli and 
Lognormal processes in the early (1948-2003) and recent (2003-2015) time periods using 
maximum likelihood. Each parameter added is added to the model with all previously 
selected parameters included. The year predictor was included in all baseline models and was 
added first among fixed effects in model selection. 

 
 

Time 
Period 

Selected predictor ∆AIC Log-
Likelihood 

Number of 
parameters 

Bernoulli process    
1948-2003 Null 0 -73917 1 

 +year 9602 -69061 56 
 +area 19137.9 -62321 227 
 +quarter 506.8 -62065 230 
 +area:quarter 1034.4 -61231 547 
 +ln(cumulative experience) 147.0 -61156 548 
     

2003-2015 Null 0 -21636 1 
 +year 173 -21538 13 
 +sqrt(pounds of uku) 5029.36 -19022 14 
 +area 3209.4 -17321 111 
 +quarter 584.87 -17025 114 
 +area:quarter 264.75 -16632 375 
 +speed 221.33 -16520 376 

Lognormal process    
1948-2003 Null 0 -222512 2 

 +fisher 63392 -190175 3 
 +year 1171 -224504 58 
 +area 3669 -188177 221 
 +quarter 1463 -187442 224 
 +sqrt(pounds of uku) 1081 -186901 225 
 +ln(cumulative experience) 608 -186596 226 
 +Area:quarter 424 -186076 533 
     
     

2003-2015 Null 0 -50085 2 
 +fisher 16866 -41367 3 
 +year 544 -49776 15 
 +area 763 -40894 107 
 +sqrt(pounds of uku) 465 -40660 108 
 +speed 237 -40541 109 
 +quarter 168 -40454 112 
 +Area:year 96 -39460 1058 
 +ln(cumulative experience) 88 -39415 1059 
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Table 9.1. Annual index of standardized CPUE (lbs/single reporting day) for the early time 
period (1948-2003) with relative coefficient of variation (relCV) included. Relative CV was 
calculated as the ratio of CV/min(CV). Data from fishing year 1948 were used in CPUE 
standardization, with index values presented here, but the CPUE index used within the stock 
assessment model started in fishing year 1949 to align with the starting year when complete 
catch data were available. 

Year Estimated 
CPUE 

relCV  Year Estimated 
CPUE 

relCV 

1948 88.23 2.71  1976 51.38 1.00 
1949 56.47 2.24  1977 52.76 1.83 
1950 51.51 2.00  1978 83.24 2.25 
1951 72.03 2.16  1979 88.21 2.68 
1952 95.54 2.60  1980 69.94 2.14 
1953 87.77 2.95  1981 68.00 1.85 
1954 95.66 3.36  1982 59.21 1.53 
1955 154.42 3.56  1983 59.13 1.23 
1956 91.88 3.69  1984 48.53 1.35 
1957 114.42 3.04  1985 60.75 1.19 
1958 64.64 2.93  1986 64.74 1.18 
1959 55.61 3.69  1987 83.96 1.11 
1960 102.88 2.45  1988 80.23 1.07 
1961 115.02 3.45  1989 71.53 1.03 
1962 177.22 3.17  1990 64.68 1.26 
1963 126.06 3.45  1991 62.08 1.27 
1964 114.24 3.50  1992 67.47 1.38 
1965 120.58 3.33  1993 60.56 1.47 
1966 120.63 3.19  1994 67.78 1.49 
1967 108.25 2.38  1995 67.45 1.51 
1968 99.17 2.76  1996 64.43 1.53 
1969 94.77 2.80  1997 66.01 1.47 
1970 81.03 3.10  1998 65.86 1.44 
1971 75.17 2.76  1999 65.46 1.60 
1972 88.55 2.49  2000 72.59 1.41 
1973 75.18 2.48  2001 72.51 1.56 
1974 82.07 1.95  2002 68.71 1.74 
1975 77.19 2.05  2003 62.03 3.95 
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Table 9.2. Annual index of standardized CPUE (lbs/hour) for the late time period (2003-2015) 
with relative coefficient of variation (relCV) included. Relative CV was calculated as the ratio 
of CV/min(CV). 

Year Estimated CPUE relCV 
2003 8.22 1.24 
2004 7.97 1.25 
2005 9.01 1.22 
2006 8.41 1.43 
2007 8.53 1.33 
2008 9.54 1.26 
2009 9.07 1.07 
2010 8.22 1.27 
2011 9.38 1.24 
2012 8.17 1.24 
2013 8.10 1.12 
2014 10.00 1.00 
2015 12.56 1.03 
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Table 10. Prior distributions and parameter estimates for the 2018 base case assessment 
model for the main Hawaiian Islands Deep 7 bottomfish stock complex. Parameters are 
intrinsic growth rate (R), carrying capacity (K), shape parameter (M), initial proportion of 
carrying capacity (P1), catchability in first (q1) and second (q2) time periods, effective radius of 
a sample for the fishery-independent survey (rad), observation error in first (τ12 ) and second 
(τ22 ) time periods, process error (σ2), and annual unreported catch (CU). Derived quantities 
are relative biomass in 2017 (relB2017; for fitting to the observed relative fishery-independent 
survey estimate), maximum sustainable yield (MSY) for total and reported catch, harvest rate 
at MSY (HMSY), biomass at MSY (BMSY), and proportion of carrying capacity at MSY (PMSY). 
Biomass and MSY are reported in millions of pounds. 

 Prior distributions Parameter estimates 

Parameter Distribution Mean CV Bounds Mean SD 

R lognormal 0.10 25%  0.111 0.028 
K lognormal 29 million 

lbs. 
50%  27.55 9.69 

M gamma 1.0 140%  2.26 1.54 
P1 lognormal 0.53 20%  0.558 0.100 
q1 uniform   [10-5,105] 4.52 1.60 
q2 uniform   [10-5,105] 0.616 0.301 
rad lognormal 20.2 50%  16.00 4.11 
τ1

2 inverse 
gamma 

0.83*   0.0534 0.012 

τ2
2 inverse 

gamma 
0.83*   0.231 0.116 

σ2  inverse 
gamma 

0.083*   0.030 0.012 

CU uniform U·CR  ±40%   
relB2017     2.08 x 10-6 3.97 x 10-7 

MSY (total 
catch) 

    1.048 0.481 

MSY 
(reported 
catch) 

    0.509 0.233 

HMSY     0.069 0.026 

BMSY     15.42 4.91 

PMSY     0.571 0.083 

*Value is mode rather than mean.  
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Table 11. Summary of sensitivity scenarios evaluated for the Deep 7 bottomfish surplus 
production model as described in detail in the sensitivity analyses section (section 3.4). 
Values are for carrying capacity (K), intrinsic growth rate (R), shape parameter (M), initial 
proportion of carrying capacity (P1), process error (σ2), observation errors (τi2) in time period i, 
catch scenarios for unreported to reported ratios (U), error bounds in estimating unreported 
catch (CU), random-walk catchability (qi) in time period i, uniform prior for process and 
observation errors (uniform), removal of the fishery-independent survey (S2017), and effective 
radius of a sample for the fishery-independent survey (rad). 

Value 
Number of 
scenarios Type of change Description 

K 4 Distribution mean 
Prior mean adjusted by ± 25% and 
50% 

R 3 Distribution mean 
Prior mean adjusted by ± 50% and 
+150% 

M 4 Distribution mean 
Scale parameter adjusted to produce ± 
25% and 50% changes in prior mean 

P1 4 Distribution mean 
Prior mean adjusted by ± 25% and 
50% 

τi2 4 Distribution mode 
Prior mode adjusted by multiplicative 
factors of ± 10 and ± 100 

σ2 4 Distribution mode 
Prior mode adjusted by multiplicative 
factors of ± 10 and ± 100 

Unreported catch 
ratio (U) 4 Data 

Catch data adjusted using different 
non-reporting ratios 

Error around 
unreported catch (CU) 3 Distribution bounds 

Prior uniform distribution bounds 
adjusted by ± 50% and set near zero 

Directional error 
around unreported 
catch (CU) 2 Distribution bounds 

Adjusting prior uniform distribution 
bounds directionally by ± 25% 

qi 1 
Model 
parameterization Random walk q incorporated 

σ2, τi2 prior 
distributions 1 Distribution type 

Uniform prior for process and 
observation errors 

Survey (S2017) 1 Data Exclude survey from model 

Survey (rad) 1 

Distribution 
coefficient of variation 
(CV) Prior CV reduced to 0.01 
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Table 12. Convergence diagnostics for the Gelman Rubin, Geweke, and Heidelberger and 
Welch (HW) tests, along with autocorrelation at lags 1 and 5. Values shown are the upper 
confidence interval for the Gelman Rubin diagnostic, which when near 1 indicates 
convergence; the absolute value of the Z-score for the Geweke diagnostic, which when < 2 
indicates convergence; and p values from the Heidelberger and Welch stationarity diagnostic 
for the full chain, which when > 0.05 indicates convergence. For the criteria based on 
individual chains (Geweke and Heidelberger and Welch diagnostics, and autocorrelation), the 
values shown are from the most extreme chain for each parameter.  

Parameters Gelman and 
Rubin 

Geweke HW 
stationarity 

HW half-
width 

Lag1 auto-
correlation 

Lag5 auto-
correlation 

BMSY 1.002 0.97 0.25 Passed 0.53 0.11 
FMSY 1.001 1.26 0.07 Passed 0.33 0.14 
HMSY 1.001 1.24 0.07 Passed 0.33 0.14 
MSY 1.001 0.34 0.70 Passed 0.25 0.09 
PMSY 1.001 1.28 0.13 Passed 0.28 0.12 
R 1.000 1.83 0.10 Passed 0.07 0.03 
K 1.003 1.15 0.10 Passed 0.66 0.17 
M 1.001 1.69 0.10 Passed 0.23 0.09 
q1 1.003 0.26 0.51 Passed 0.65 0.17 
q2 1.001 0.67 0.30 Passed 0.58 0.18 
rad 1.000 0.89 0.15 Passed 0.45 0.12 
σ2 1.000 1.17 0.16 Passed 0.12 0.01 
τ12 1.000 1.49 0.47 Passed 0.01 0.01 
τ22 1.000 1.23 0.32 Passed 0.01 0.01 
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Table 13. Correlation coefficients among parameter estimates. Parameters are carrying 
capacity (K), intrinsic growth rate (R), initial proportion of carrying capacity (P1), shape 
parameter (M), catchability in first (q1) and second (q2) time periods, survey sample radius 
(rad), observation error in first (τ12 ) and second (τ22 ) time periods, and process error (σ2).  

R P1 M q1 q2 rad τ12 τ2
_2 σ2 

K -0.23 -0.12 -0.34 -0.67 -0.43 -0.39 0.01 0.01 -0.04 
R - 0.01 -0.06 0.16 0.04 0.03 0.00 -0.01 0.00 
P1 - - 0.09 -0.17 -0.09 -0.05 0.01 0.00 -0.07 
M - - - 0.12 -0.02 -0.03 0.02 -0.01 -0.03 
q1 - - - - 0.63 0.51 -0.01 0.00 0.06 
q2 - - - - - 0.68 0.02 0.06 0.12 
rad - - - - - - 0.01 0.05 0.10 
τ1

2 - - - - - - - 0.00 0.10 
τ2

2 - - - - - - - - 0.06 
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Table 14. Estimates of mean exploitable biomass (B) in million lbs, mean relative exploitable 
biomass (B/BMSY), probability of being overfished (B/BMSY< 0.844), mean harvest rate (H), 
relative mean harvest rate (H/HMSY), and probability of overfishing (H/HMSY>1) for the Deep 7 
Bottomfish complex in the main Hawaiian Islands from 1949 through 2015. 

Year B 
(million 

lbs) 

B/BMSY Probability 
of Being 

Overfished 

H H/HMSY Probability 
of 

Overfishing 

1949 15.25 1 0.27 0.07 0.95 0.45 
1950 16.1 1.05 0.22 0.06 0.79 0.3 
1951 17.62 1.15 0.15 0.05 0.77 0.29 
1952 19.05 1.24 0.11 0.05 0.66 0.21 
1953 20.13 1.31 0.08 0.04 0.54 0.12 
1954 21.22 1.38 0.07 0.04 0.53 0.12 
1955 22.11 1.44 0.05 0.03 0.42 0.06 
1956 22.43 1.47 0.05 0.04 0.52 0.12 
1957 22.55 1.47 0.05 0.04 0.62 0.19 
1958 22.14 1.44 0.05 0.03 0.42 0.06 
1959 22.64 1.48 0.05 0.03 0.38 0.05 
1960 23.68 1.55 0.03 0.02 0.3 0.03 
1961 24.64 1.61 0.03 0.02 0.23 0.02 
1962 25.64 1.68 0.02 0.02 0.29 0.03 
1963 25.66 1.68 0.02 0.03 0.36 0.04 
1964 25.42 1.66 0.02 0.03 0.35 0.04 
1965 25.19 1.65 0.02 0.03 0.38 0.05 
1966 24.8 1.62 0.02 0.02 0.31 0.03 
1967 24.37 1.59 0.03 0.03 0.45 0.08 
1968 23.51 1.54 0.04 0.03 0.37 0.05 
1969 22.74 1.49 0.05 0.03 0.36 0.04 
1970 21.89 1.43 0.06 0.02 0.32 0.04 
1971 21.19 1.39 0.07 0.02 0.28 0.03 
1972 20.74 1.36 0.08 0.04 0.52 0.12 
1973 19.78 1.29 0.1 0.03 0.42 0.07 
1974 18.96 1.24 0.12 0.04 0.6 0.17 
1975 17.64 1.15 0.17 0.04 0.6 0.17 
1976 16.02 1.05 0.25 0.05 0.7 0.24 
1977 16.44 1.07 0.24 0.05 0.72 0.27 
1978 17.32 1.13 0.2 0.06 0.84 0.37 
1979 17.54 1.15 0.2 0.05 0.75 0.3 
1980 17.29 1.13 0.2 0.05 0.72 0.27 
1981 16.98 1.11 0.21 0.07 0.93 0.45 
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Year B 
(million 

lbs) 

B/BMSY Probability 
of Being 

Overfished 

H H/HMSY Probability 
of 

Overfishing 

1982 16.29 1.06 0.24 0.07 0.96 0.47 
1983 15.89 1.04 0.26 0.09 1.24 0.66 
1984 15.54 1.02 0.29 0.07 0.99 0.49 
1985 16.45 1.08 0.21 0.09 1.25 0.67 
1986 17.42 1.14 0.16 0.08 1.17 0.62 
1987 18.81 1.23 0.1 0.09 1.34 0.72 
1988 18.79 1.23 0.1 0.1 1.41 0.75 
1989 17.93 1.17 0.14 0.1 1.48 0.78 
1990 16.96 1.11 0.2 0.08 1.2 0.64 
1991 16.57 1.08 0.23 0.06 0.84 0.37 
1992 16.76 1.09 0.22 0.07 0.97 0.47 
1993 16.61 1.08 0.23 0.05 0.72 0.27 
1994 17 1.11 0.2 0.06 0.87 0.4 
1995 17.05 1.11 0.2 0.07 0.95 0.46 
1996 16.92 1.1 0.21 0.05 0.76 0.3 
1997 17.04 1.11 0.2 0.06 0.83 0.36 
1998 17.09 1.11 0.2 0.05 0.76 0.3 
1999 17.23 1.12 0.2 0.04 0.51 0.11 
2000 17.72 1.16 0.17 0.05 0.71 0.26 
2001 17.68 1.15 0.17 0.04 0.54 0.13 
2002 17.56 1.14 0.18 0.03 0.41 0.07 
2003 17.59 1.15 0.2 0.04 0.5 0.12 
2004 17.66 1.15 0.22 0.03 0.37 0.07 
2005 17.98 1.17 0.21 0.03 0.43 0.1 
2006 18.09 1.18 0.22 0.02 0.32 0.06 
2007 18.33 1.2 0.21 0.03 0.38 0.08 
2008 18.55 1.21 0.21 0.03 0.36 0.08 
2009 18.62 1.22 0.21 0.04 0.47 0.14 
2010 18.57 1.21 0.21 0.03 0.39 0.09 
2011 18.74 1.22 0.2 0.04 0.51 0.17 
2012 18.68 1.22 0.2 0.03 0.39 0.1 
2013 18.99 1.24 0.19 0.03 0.38 0.09 
2014 19.62 1.28 0.17 0.04 0.54 0.18 
2015 20.03 1.31 0.16 0.04 0.51 0.17 
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Table 15. Projection results for mean probability of overfishing (H/HMSY>1) and corresponding annual reported catch where the 
probability of overfishing is reached. The mean probability the stock is overfished (B/BMSY<0.844), median harvest rate, and mean 
biomass are the values in each year that correspond to the specified reported catch values.  

Probability of 
overfishing 
(H/HMSY>1) 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

Reported catch (millions of lbs.) 
  2018 0 0.146 0.222 0.282 0.336 0.382 0.43 0.474 0.518 0.562 0.604 
  2019 0 0.148 0.224 0.284 0.336 0.382 0.426 0.468 0.508 0.550 0.588 
  2020 0 0.150 0.226 0.284 0.334 0.38 0.422 0.462 0.500 0.538 0.578 
  2021 0 0.152 0.228 0.286 0.336 0.378 0.420 0.458 0.492 0.528 0.566 
  2022 0 0.152 0.228 0.286 0.334 0.378 0.418 0.452 0.490 0.522 0.558 
Probability stock is overfished (B/BMSY<0.844) 
  2019 0.12 0.13 0.13 0.14 0.14 0.14 0.15 0.15 0.15 0.16 0.16 
  2020 0.10 0.12 0.12 0.13 0.14 0.14 0.15 0.16 0.16 0.17 0.17 
  2021 0.08 0.10 0.12 0.13 0.14 0.15 0.15 0.16 0.17 0.18 0.19 
  2022 0.07 0.10 0.11 0.12 0.14 0.15 0.16 0.17 0.18 0.19 0.20 
Harvest rate 
  2018 0.000 0.016 0.025 0.032 0.038 0.043 0.048 0.053 0.058 0.063 0.068 
  2019 0.000 0.016 0.025 0.032 0.038 0.043 0.048 0.053 0.058 0.064 0.068 
  2020 0.000 0.016 0.025 0.032 0.037 0.043 0.048 0.053 0.058 0.063 0.068 
  2021 0.000 0.016 0.025 0.032 0.038 0.043 0.048 0.053 0.058 0.063 0.068 
  2022 0.000 0.016 0.025 0.031 0.037 0.043 0.048 0.053 0.058 0.063 0.069 
Biomass (millions of lbs.) 
  2019 20.22 19.91 19.76 19.63 19.52 19.43 19.34 19.25 19.17 19.08 19.01 
  2020 20.79 20.21 19.92 19.69 19.50 19.32 19.15 19.00 18.85 18.70 18.54 
  2021 21.31 20.48 20.07 19.75 19.47 19.23 19.00 18.78 18.59 18.39 18.17 
  2022 21.78 20.74 20.21 19.80 19.46 19.15 18.86 18.61 18.34 18.10 17.83 
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Table 16. Probability of overfishing (H/HMSY>1) and projected reported catch (millions of lbs) by year. Catch values for a given 
probability of overfishing in a given year were applied in all previous years (i.e., 2018 to year of interest). 

 Reported catch for a given year    Reported catch for a given year  

P(Overfishing) 2018 2019 2020 2021 2022  P(Overfishing) 2018 2019 2020 2021 2022 
0.00 0 0 0 0 0  0.26 0.392 0.39 0.39 0.386 0.386 
0.01 0.034 0.036 0.036 0.036 0.036  0.27 0.4 0.4 0.398 0.396 0.392 
0.02 0.072 0.074 0.076 0.076 0.078  0.28 0.412 0.408 0.406 0.404 0.402 
0.03 0.102 0.102 0.106 0.106 0.106  0.29 0.42 0.418 0.414 0.412 0.408 
0.04 0.126 0.128 0.128 0.132 0.132  0.30 0.43 0.426 0.422 0.42 0.418 
0.05 0.146 0.148 0.15 0.152 0.152  0.31 0.438 0.434 0.432 0.426 0.424 
0.06 0.164 0.164 0.166 0.168 0.168  0.32 0.448 0.444 0.438 0.434 0.43 
0.07 0.18 0.182 0.184 0.184 0.186  0.33 0.456 0.452 0.448 0.444 0.438 
0.08 0.194 0.196 0.198 0.198 0.202  0.34 0.466 0.458 0.454 0.452 0.446 
0.09 0.208 0.212 0.212 0.214 0.216  0.35 0.474 0.468 0.462 0.458 0.452 
0.10 0.222 0.224 0.226 0.228 0.228  0.36 0.484 0.476 0.472 0.464 0.46 
0.11 0.234 0.238 0.238 0.242 0.242  0.37 0.492 0.484 0.478 0.472 0.468 
0.12 0.246 0.25 0.252 0.254 0.254  0.38 0.5 0.49 0.486 0.48 0.474 
0.13 0.262 0.262 0.262 0.264 0.266  0.39 0.51 0.502 0.492 0.486 0.482 
0.14 0.272 0.272 0.274 0.274 0.276  0.40 0.518 0.508 0.5 0.492 0.49 
0.15 0.282 0.284 0.284 0.286 0.286  0.41 0.528 0.516 0.51 0.502 0.494 
0.16 0.294 0.296 0.294 0.296 0.298  0.42 0.536 0.526 0.514 0.508 0.502 
0.17 0.304 0.304 0.306 0.306 0.308  0.43 0.544 0.532 0.524 0.516 0.508 
0.18 0.314 0.314 0.316 0.316 0.318  0.44 0.552 0.54 0.532 0.522 0.516 
0.19 0.324 0.326 0.326 0.326 0.326  0.45 0.562 0.55 0.538 0.528 0.522 
0.20 0.336 0.336 0.334 0.336 0.334  0.46 0.57 0.556 0.548 0.538 0.528 
0.21 0.346 0.346 0.344 0.344 0.344  0.47 0.58 0.564 0.552 0.546 0.536 
0.22 0.356 0.354 0.354 0.352 0.352  0.48 0.588 0.574 0.56 0.552 0.544 
0.23 0.364 0.364 0.362 0.362 0.36  0.49 0.596 0.58 0.57 0.56 0.55 
0.24 0.376 0.374 0.372 0.37 0.37  0.50 0.604 0.588 0.578 0.566 0.558 
0.25 0.382 0.382 0.38 0.378 0.378        
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Table 17. Sensitivity of production model results to 25% and 50% increases and decreases to prior means for carrying capacity (K), 
shape parameter (M), initial proportion of carrying capacity (P1); 50% increase and decreases and 150% increase to prior means 
for intrinsic growth rate (R); 10 and 100-fold increases and decreases in prior values for process error (σ2) and observation errors 
in both time periods i (τi2); alternative error bounds for estimating unreported catch (CU 0.01- CU pos25; see section 3.4), 
alternative catch scenarios (Catch I-Catch IV; see section 3.4), random-walk catchability (q), uniform prior for process and 
observation error (uniform), removal of the fishery-independent survey (S2017), and reduction in prior CV of survey sample radius 
(Survey CV). Results are expressed as percent change relative to base case model for R, K, M, P1, maximum sustainable yield 
(MSY), biomass at MSY (BMSY), harvest rate at MSY (HMSY), total exploitable biomass in 2015 (B2015), harvest rate in 2015 (H2015), 
probability of overfishing in 2015 (i.e., H/HMSY>1; poflH2015), probability of the stock being overfished in 2015 (i.e., B/BMSY<(1-
natM); poflB2015), harvest rate in 2015 relative to HMSY (H2015/HMSY), and total exploitable biomass in 2015 relative to BMSY 
(B2015/BMSY). An asterisk (*) in cells of the pofl columns indicates a change in status for the sensitivity run compared to the base 
case. 

Scenario R K M P1 MSY BMSY HMSY B2015 H2015 poflH 
2015 

poflB 
2015 

H2015/ 
HMSY 

B2015/B
MSY 

K = 14.50 7.28 -26.50 23.69 1.85 -8.15 -22.05 18.20 -21.72 23.69 -12.30 -16.52 4.64 0.43 
K = 21.75 2.70 -12.23 9.24 0.59 -4.10 -10.18 7.11 -10.43 10.21 -4.00 -6.57 2.90 -0.28 
K = 36.25 -2.07 13.43 -9.63 -1.15 2.39 10.18 -7.04 7.59 -5.71 15.58 16.26 1.42 -2.35 
K = 43.50 -3.68 26.61 -16.35 -1.69 5.44 20.49 -12.33 16.28 -11.50 23.88 24.62 0.94 -3.50  

R = 0.05 -50.31 24.57 0.09 -0.22 -39.21 23.28 -52.10 3.00 0.13 227.10* 109.25 109.03 -16.45 
R = 0.15 48.61 -11.91 -7.42 0.59 27.00 -12.91 46.11 -2.65 1.01 -60.32 -53.95 -30.87 11.78 
R = 0.25 140.52 -22.29 -25.23 -0.04 60.88 -26.20 118.66 -8.84 7.21 -82.25 -79.67 -50.97 23.53 

 
M=0.5 0.45 9.04 -35.40 -1.17 -15.84 -0.26 -15.17 0.20 0.99 58.33 12.50 19.05 0.46 
M=0.75 0.09 3.81 -15.47 -0.50 -5.83 0.13 -5.78 0.75 -0.13 19.46 3.70 6.00 0.62 
M=1.25 -0.54 -0.69 9.94 -0.11 3.53 1.10 2.35 -0.45 0.53 -4.06 1.79 -1.78 -1.53 
M=1.5 -0.63 -1.96 19.18 -0.13 6.11 1.36 4.69 -0.75 0.30 -12.06 1.91 -4.19 -2.08 
P1 = 0.215 -3.32 36.01 -33.67 -46.18 -2.86 23.87 -19.83 -14.13 20.61 122.93 212.05 50.44 -30.67 
P1 = 0.323 -0.99 9.62 -12.68 -21.46 -2.58 5.71 -6.72 -4.44 6.30 36.66 56.12 13.96 -9.60 
P1 = 0.538 0.09 -2.36 4.11 19.25 0.76 -1.36 1.51 2.90 -3.39 -11.22 -24.74 -4.83 4.32 
P1= 0.645 -0.09 -3.67 4.46 37.63 0.00 -2.46 1.25 4.79 -5.01 -11.58 -34.69 -6.18 7.44 
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Scenario R K M P1 MSY BMSY HMSY B2015 H2015 poflH 
2015 

poflB 
2015 

H2015/ 
HMSY 

B2015/B
MSY 

τi2 x 0.01 -0.18 -4.25 -9.01 -7.48 -5.29 -4.41 -0.65 14.68 -19.95 -77.81 -93.95 -19.43 19.97 
τi2 x 0.1 -0.99 -0.18 -8.26 -3.89 -3.91 -1.04 -2.42 11.13 -15.78 -55.52 -74.59 -13.69 12.30 
τi2 x 10 -1.26 5.48 -7.87 -1.85 -1.53 3.18 -5.57 -13.33 33.75 95.64 135.59 41.64 -16.00 
τi2 x 100 -2.79 11.80 -26.47 -3.10 -8.71 5.06 -15.66 -18.27 58.43 168.78* 200.38 87.86 -22.21 

 
σ2 x 0.01 0.18 9.07 2.96 8.14 4.01 7.26 -0.09 10.88 -18.08 -52.53 -66.75 -18.01 3.38 
σ2 x 0.1 0.00 5.59 1.55 4.34 2.39 4.60 -0.23 5.94 -11.25 -30.99 -41.52 -11.05 1.28 
σ2 x 10 -1.53 -3.16 -17.41 -3.80 -11.20 -5.97 -8.39 -7.09 22.12 83.16 76.72 33.32 -1.19 
σ2 x 100 -5.66 -5.81 -47.46 -5.83 -36.75 -16.02 -30.04 -11.18 69.10 231.88* 144.39 141.73 5.76 

 
Catch I 2.70 17.21 10.30 0.99 29.39 20.36 7.56 13.33 48.87 77.25 23.47 38.41 -5.84 
Catch II -0.63 0.00 -1.99 -0.25 -2.48 -0.71 -1.88 3.39 -43.46 -62.59 -18.11 -42.38 4.14 
Catch III -1.17 -5.34 -4.77 -0.47 -10.17 -6.68 -3.66 -8.44 23.77 65.07 11.03 28.47 -1.88 
Catch IV -6.74 -22.00 -32.52 -2.44 -46.43 -29.44 -25.72 -25.41 -31.00 38.63 -5.04 -7.11 5.71 

 
CU 0.01 -0.18 0.76 -0.35 -0.11 -0.10 0.52 -0.48 0.25 -0.03 0.42 -0.77 0.45 -0.27 
CU 0.2 0.27 -0.11 -0.09 0.00 0.00 -0.19 0.26 -1.20 1.26 3.76 3.44 1.00 -1.01 
CU 0.6 -0.18 1.45 -1.59 -0.32 -0.48 0.84 -1.04 -0.20 0.81 8.42 6.95 1.87 -1.03 
CU neg25 -0.90 -3.23 -5.61 -0.38 -8.25 -4.73 -3.55 -5.29 -1.80 9.13 4.15 1.82 -0.59 
CU pos25 0.72 4.61 1.77 0.00 6.20 4.86 1.53 2.90 4.93 7.76 8.23 3.35 -1.88 

 
q -4.58 28.82 -26.20 -3.03 0.29 20.00 -19.04 20.67 -1.95 70.99 64.60 21.11 0.52 
uniform 0.54 -3.23 -9.28 -7.74 -3.34 -3.18 0.61 19.12 -24.12 -90.25 -98.43 -24.58 23.03 

 
No survey -0.63 5.88 -2.39 0.23 3.72 5.25 -1.70 10.18 -1.87 0.00 0.00 -0.17 4.69 
Survey CV 0.72 -14.77 -2.56 -1.15 -18.72 -16.28 -0.66 -37.24 39.39 102.03 113.90 40.32 -25.04 
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Table 18. Posterior mean of select model parameters and derived quantities from the 
opakapaka production model. The ratio of these values to corresponding values from the 
production model for the Deep 7 bottomfish complex are also shown. The total catch and 
survey estimates, which were data inputs, are provided for comparison.  

Parameters or quantities Opakapaka model 
Ratio of 

opakapaka:Deep7 
Total catch (million lbs) – average 
2011-2015 0.395 0.709 
2016 relative survey estimate 
(million lbs) 1.36 x 10-6 0.677 
   
R 0.111 1.000 
K (million lbs) 17.77 0.645 
M 2.311 1.021 
q1 4.861 1.074 
q2 0.637 1.033 
rad 16.69 1.043 
σ2 0.029 0.992 
τ12 0.056 1.042 
τ22 0.238 1.035 
P1 0.620 1.112 
MSY (million lbs) 0.687 0.655 
BMSY (million lbs)  10.00 0.648 
HMSY 0.070 1.009 
PMSY 0.574 1.005 

  



77 

9. FIGURES 

Figure 1. Location of the three Hawaiian bottomfish fishing zones: the main Hawaiian Islands 
(MHI) zone, the Mau Zone, and the Ho’omalu Zone. Together, the Mau and Ho’omalu Zones 
are known as the Northwestern Hawaiian Islands, which is now closed to fishing. The current 
stock assessment is for the Deep 7 bottomfish complex in the main Hawaiian Islands. 
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Figure 2. Boundary of the main Hawaiian Islands (thick solid black outline) used for the 2018 
benchmark stock assessment using defined area codes. The portion outlined in red is the 
definition for the Papahānaumokuākea Marine National Monument as of August 25, 2016 
prior to subsequent expansion. Purple shading reflects locations of bottomfish restricted 
fishing areas (BRFAs).   



79 

Figure 3.1 Model diagnostics for the best fit Bernoulli model for the early (1948-2003) time 
period. Diagnostic plots include plots of quantile residuals against model predicted values (to 
assess heteroscedasticity), histogram of quantile residuals (to assess normality), and plots of 
quantile residuals against values of each predictor variable (to assess patterning in the 
predictor variables). 
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Figure 3.2. Model diagnostics for the best fit Bernoulli model for the recent (2003-2015) time 
period. Diagnostic plots include plots of quantile residuals against model predicted values (to 
assess heteroscedasticity), histogram of quantile residuals (to assess normality), and plots of 
quantile residuals against values of each predictor variable (to assess patterning in the 
predictor variables). 
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Figure 3.3. Model diagnostics for the best fit Lognormal model for the early (1948-2003) time 
period. Diagnostic plots include plots of quantile residuals against model predicted values (to 
assess heteroscedasticity), histogram of quantile residuals and the quantile-quantile plot (to 
assess normality), and plots of quantile residuals against values of each predictor variable (to 
assess patterning in the predictor variables).
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Figure 3.4. Model diagnostics for the best fit Lognormal model for the recent (2003-2015) 
time period. Diagnostic plots include plots of quantile residuals against model predicted 
values (to assess heteroscedasticity), histogram of quantile residuals and the quantile-
quantile plot (to assess normality), and plots of quantile residuals against values of each 
predictor variable (to assess patterning in the predictor variables).



83 

Figure 4. Effect of shape parameter M on the relationship between surplus production 
(expressed as proportion of maximum) and biomass (expressed as proportion of carrying 
capacity).
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Figure 5. Goodness-of-fit values for alternative choices for the mean of the prior distribution 
of the initial proportion of carrying capacity (P1) for Deep 7 bottomfish in the main Hawaiian 
Islands.
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Figure 6. Unreported catch ratios (U) for the four sensitivities on alternative unreported catch 
(gray lines) compared to the ratios for the base model (black line). Ratios were assigned 
separately by species, but for ease of plotting, were averaged by catch weight across species 
here.
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Figure 7. Observed and predicted CPUE for Deep7 bottomfish in the main Hawaiian Islands 
from 1949 through 2003.
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Figure 8. Standardized residuals of observed versus predicted CPUE for Deep 7 bottomfish 
CPUE in the main Hawaiian Islands by fishing year from 1949-2003 and p values for linear 
regression hypothesis tests of whether standardized residuals had a temporal trend, were 
normally distributed, and had constant variance.
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Figure 9. Observed and predicted CPUE for Deep 7 bottomfish in the main Hawaiian Islands 
from 2003 through 2015.
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Figure 10. Standardized residuals of observed versus predicted CPUE for Deep 7 bottomfish 
CPUE in the main Hawaiian Islands by fishing year from 2003-2015, and p values for linear 
regression hypothesis tests of whether standardized residuals had a temporal trend, were 
normally distributed, and had constant variance.
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Figure 11. Prior distributions (dashed red line) and posterior densities (solid black line) for 
model parameters including carrying capacity (K), intrinsic growth rate (R), initial proportion 
of carrying capacity (P1), shape parameter (M), catchability in the early (q1) and recent (q2) 
time periods, effective radius of a sample from the fishery-independent survey (rad), process 
error (σ2), and observation error for the early (τ12) and recent (τ22) time periods for Deep 7 
bottomfish in the main Hawaiian Islands. See Section 3.1.2 for descriptions of prior 
distributions.  
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Figure 12. Uniform prior distribution (dashed red line) and posterior density (solid black line) 
for total Deep 7 bottomfish catch in the main Hawaiian Islands in 2015. 
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Figure 13. Calculated prior distributions (dashed red lines) and posterior densities (solid lines) 
for model estimates of maximum sustainable yield (MSY), biomass to produce MSY (BMSY), 
harvest rate to produce MSY (HMSY), and proportion of carrying capacity to produce MSY 
(PMSY) for Deep 7 bottomfish in the main Hawaiian Islands. 
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Figure 14. Pairwise scatterplots of parameter estimates. Parameters are carrying capacity (K), 
intrinsic growth rate (R), initial proportion of carrying capacity (P1), shape parameter (M), 
catchability in first (q1) and second (q2) time periods, survey sample radius (rad), observation 
error in first (τ12 ) and second (τ22 ) time periods, and process error (σ2). 
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Figure 15. Estimated exploitable biomass (solid line) with 95% credible interval (dashed lines) 
for Deep 7 bottomfish in the main Hawaiian Islands from 1949 through 2015. Horizontal gray 
line depicts BMSY, and black line depicts the 0.844*BMSY reference point.
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Figure 16. Estimated harvest rate (solid line) with 95% credible interval (dashed lines) for 
Deep 7 bottomfish in the main Hawaiian Islands from 1949 through 2015. Horizontal gray line 
depicts HMSY reference point.
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Figure 17. Estimated status for Deep 7 Bottomfish in the main Hawaiian Islands from 1949 
through 2015. Triangles delineate start and end years. Horizontal and vertical lines delineate 
reference points for overfishing (i.e., H/HMSY>1) and overfished status (i.e., B/BMSY< 0.844).
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Figure 18. Probability of overfishing (i.e., H/HMSY>1) Deep 7 bottomfish in the main Hawaiian 
Islands in fishing years 2018 through 2022 as a function of projected reported catch varying 
from 0 to 1 million pounds.



98 

Figure 19. Probability of the stock being overfished (i.e., B/BMSY<0.844) for Deep 7 bottomfish 
in the main Hawaiian Islands in fishing years 2019 through 2022 as a function of projected 
reported catch varying from 0 to 1 million pounds (2018 was not shown because it was not a 
function of simulated alternative catch values).
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Figure.20. Median harvest rate for Deep 7 bottomfish in the main Hawaiian Islands in fishing 
years 2018 through 2022 as a function of projected reported catch varying from 0 to 1 million 
pounds. 
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Figure 21. Mean exploitable biomass for Deep 7 bottomfish in the main Hawaiian Islands in 
fishing years 2019 through 2022 as a function of projected reported catch varying from 0 to 1 
million pounds (biomass in 2018 is not shown because it was not a function of simulated 
alternative catch values). 
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Figure 22.1. Retrospective analysis for estimated mean exploitable biomass from a model 
excluding the fishery-independent survey and with terminal year set as fishing year 2015 
through 2011 (non-solid lines) compared to the base case model (solid line).
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Figure 22.2. Retrospective analysis for estimated mean harvest rate from a model excluding 
the fishery-independent survey and with terminal year set as 2015 through 2011 (non-solid 
lines) compared to the base case model (solid line).
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Figure 23.1. Estimated mean exploitable biomass as a function of different prior means for 
carrying capacity (K). Values of K were calculated as +/-25% and +/-50% of the mean value 
used for the base case (μK = 29 million lbs.; gray line). 
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Figure 23.2. Estimated mean harvest rate as a function of different prior means for carrying 
capacity (K). Values of K were calculated as +/-25% and +/-50% of the mean value used for 
the base case (μK = 29 million lbs.; gray line).
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Figure 24.1. Estimated mean exploitable biomass as a function of different prior means for 
intrinsic growth rate (R). Values of R were calculated as +/- 50% and +150% of the mean value 
used for the base case (μR = 0.10.; gray line).
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Figure 24.2. Estimated mean harvest rate as a function of different prior means for intrinsic 
growth rate (R). Values of R were calculated as +/- 50% and +150% of the mean value used for 
the base case (μR = 0.10.; gray line).
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Figure 25.1. Estimated mean exploitable biomass as a function of different prior means for 
the shape parameter (M). Values of M were calculated as +/- 25% and +/- 50% of the mean 
value used for the base case (μM = 1.00.; gray line). 
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Figure 25.2. Estimated mean harvest rate as a function of different prior means for the shape 
parameter (M). Values of M were calculated as +/- 25% and +/- 50% of the mean value used 
for the base case (μM = 1.00.; gray line). 
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Figure 26.1.  Estimated mean exploitable biomass as a function of different prior means for 
the initial proportion of carrying capacity (P1). Values of P1 were calculated as +/- 25% and +/- 
50% of the mean value used for the base case (μP = 0.53.; gray line).
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Figure 26.2. Estimated mean harvest rate as a function of different prior means for the initial 
proportion of carrying capacity (P1). Values of P1 were calculated as +/- 25% and +/- 50% of 
the mean value used for the base case (μP = 0.53.; gray line). 
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Figure 27.1. Estimated mean exploitable biomass as a function of different prior modes for 
observation error variance for both time periods i (τi2). The base-case value (MODE[τi2] = 0.83; 
gray line) was multiplied by 10-2, 10-1, 101, and 102 
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Figure 27.2. Estimated mean harvest rate as a function of different prior modes for 
observation error variance for both time periods i (τi2). The base-case value (MODE[τi2] = 0.83; 
gray line) was multiplied by 10-2, 10-1, 101, and 102.
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Figure 28.1. Estimated mean exploitable biomass as a function of different prior modes for 
process error variance (σ2). The base-case value (MODE[σ2] = 0.83 x 10-1; gray line) was 
multiplied by 10-2, 10-1, 101, and102
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Figure 28.2. Estimated mean harvest rate as a function of different prior modes for process 
error variance (σ2). The base-case value (MODE[σ2] = 0.83; gray line) was multiplied by 10-2, 
10-1, 101, and 102. 
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Figure 29.1. Estimated mean exploitable biomass as a function of different scenarios for 
modeling unreported catch ratios (see text for scenario descriptions).
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Figure 29.2. Estimated mean harvest rate as a function of different scenarios for modeling 
unreported catch ratios (see text for scenario descriptions).
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Figure 30.1. Estimated mean exploitable biomass given alternative bounds on uniform 
distribution used to estimate unreported catch. Directional biases in the unreported catch 
error were evaluated by adjusting the base-case bounds (gray line, [0.60,1.40]) downward 
and upward by 25%.
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Figure 30.2. Estimated mean harvest rate given alternative bounds on uniform distribution 
used to estimate unreported catch. Directional biases in the unreported catch error were 
evaluated by adjusting the base-case bounds (gray line, [0.60,1.40]) downward and upward 
by 25%.
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Figure 31.1. Estimated mean exploitable biomass when incorporating time-varying 
catchability, as a random walk (black line) versus constant catchability (base case; gray line). 
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Figure 31.2. Estimated mean harvest rate when incorporating time-varying catchability as a 
random walk (black line) versus constant catchability (base case; gray line).
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Figure 32.1. Estimated mean exploitable biomass using uniform prior distributions for the 
standard deviation of observation and process errors (black line) versus using the inverse 
gamma distribution for the variance of observation and process errors (base case; gray line). 
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Figure 32.2. Estimated mean harvest rate using uniform prior for the standard deviation of 
observation and process errors (black line) versus using the inverse gamma distribution for 
the variance of observation and process errors (base case; gray line). 
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Figure 33.1. Estimated mean exploitable biomass for the base case (blue lines and shading) 
and with the fishery-independent survey excluded (red lines and shading). Horizontal lines 
delineate 0.844*BMSY reference points for the base case (dotted blue line) and the scenario 
with the survey excluded (dashed red line). 
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Figure 33.2. Estimated mean harvest rate for the base case (blue lines and shading) and with 
the fishery-independent survey excluded (red lines and shading). Horizontal line delineates 
the HMSY reference points for the base case (dotted blue line) and the scenario with the 
survey excluded (dashed red line).



125 

Figure 34.1. Estimated mean exploitable biomass for the base case (blue lines and shading) 
and with decreased CV of the prior on the effective radius of a single sample for the fishery-
independent survey (red lines and shading). Horizontal lines delineate 0.844*BMSY reference 
points for the base case (dotted blue line) and the scenario with the survey excluded (dashed 
red line). 
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Figure 34.2. Estimated mean harvest rate for the base case (blue lines and shading) and with 
decreased CV of the prior on the effective radius of a single sample for the fishery-
independent survey (red lines and shading). Horizontal line delineates the HMSY reference 
points for the base case (dotted blue line) and the scenario with the survey excluded (dashed 
red line).  
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Figure 35. Biomass comparison between the opakapaka production model (paka) and the 
Deep 7 production model (d7) for the main Hawaiian Islands. Panel A: Posterior mean 
exploitable biomass estimates and 95% credible intervals for the opakapaka production 
model (black) and the Deep 7 complex production model (red). Panel B: Ratio (black line with 
circles) and average ratio (0.679; horizontal solid line) of the posterior mean exploitable 
biomass from the opakapaka production model to the posterior mean biomass from the Deep 
7 production model. 
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Figure 36. Harvest rate comparison between the opakapaka production model (paka) and the 
Deep 7 production model (d7) for the main Hawaiian Islands. Panel A: Posterior mean harvest 
ratio estimates and 95% credible intervals for the opakapaka production model (black) and 
the Deep 7 production model (red). Panel B: Ratio (black line with circles) and average ratio 
(0.995; horizontal solid line) of the posterior mean of opakapaka harvest rate to the posterior 
mean of Deep 7 harvest rate. 
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Figure 37. Status of opakapaka, as based on the opakapaka only model (paka; black line), 
compared to the status estimated from the model of the Deep 7 bottomfish complex (d7; red 
line) for the main Hawaiian Islands. 
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10. APPENDICES 

Appendix A. Supplementary methods and results for opakapaka production model.  

Appendix B. R code that calls WinBUGS used to fit base case assessment and projection model 
for the Deep 7 bottomfish complex in the main Hawaiian Islands from 1949-2015. 

Appendix C. R code that calls WinBUGS used to fit assessment model for opakapaka in the 
main Hawaiian Islands from 1949-2015. 

Appendix D. R code that calculates the standardized CPUE index from the final event-based 
dataset for Deep 7 in the main Hawaiian Islands during the early (1948-2003) and recent (2003-
2015) time periods. 
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Appendix A. Supplementary methods and results for opakapaka production 
model. 

Table A1. Summary of log likelihood values and reduction in AIC (∆AIC = AIC previous model – 
AIC proposed model) during model selection for the best-fit opakapaka only model for the 
Bernoulli and Lognormal processes in the early (1948-2003) and recent (2003-2015) time 
periods using maximum likelihood. Each parameter added is added to the model with all 
previously selected parameters included. The year predictor was included in all baseline 
models and was added first among fixed effects in model selection. 

 

Time 
Period 

Selected predictor ∆AIC Log-
Likelihood 

Number of 
parameters 

Bernoulli process    
1948:2003 Null 0 -53795 1 

 +year 1770 -52855 56 
 +area 10296 -47553 210 
 +sqrt(pounds of uku) 1037 -47034 211 
 +ln(cumulative experience) 273 -46896 212 
 +quarter 232 -46777 215 
     

2003:2015 Null 0 -16312 1 
 +year 109 -16246 13 
 +area 3240 -14542 106 
 +sqrt(pounds of uku) 1662 -13700 107 
 +quarter 343 -13525 110 
 +ln(cumulative experience) 147 -13451 111 
 +area:quarter 138 -13118 370 
 +speed 94 -13070 371 
     

Lognormal process    
1948:2003 Null 0 -115996 2 

 +fisher 26045 -102972 3 
 +year 1105 -102365 58 
 +area 2479 -100980 195 
 +quarter 906 -100532 198 
 +area:quarter 311 -100085 490 
 +ln(cumulative experience) 245 -99962 491 
     

2003:2015 Null 0 -24566 2 
 +fisher 5896 -21617 3 
 +year 217 -21497 15 
 +area 343 -21234 106 
 +sqrt(pounds of uku) 75 -21196 107 
 +quarter 62 -21162 110 
 +speed 27 -21148 111 
 +ln(cumulative experience) 24 -21135 112 
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Table A2.1. Annual index of standardized CPUE (lbs/single reporting day) for opakapaka for  
the early time period (1948-2003), with relative coefficient of variation (relCV) included. 
Relative CV was calculated as the ratio of CV/min(CV). Data from fishing year 1948 were used 
in CPUE standardization, with index value presented here, but the CPUE index used within 
the stock assessment model started in fishing year 1949 to align with the starting year when 
complete catch data were available. 

Year Estimated 
opakapaka 

CPUE 

relCV  Year Estimated 
opakapaka 

CPUE 

relCV 

1948 56.73 2.90  1980 59.76 1.92 
1949 34.56 2.21  1981 62.43 1.64 
1950 41.96 2.45  1982 45.49 1.26 
1951 62.04 2.28  1983 48.12 1.14 
1952 68.96 2.73  1984 32.95 1.37 
1953 59.43 3.24  1984 32.95 1.37 
1954 76.23 3.43  1985 40.21 1.23 
1955 67.20 5.18  1986 34.26 1.15 
1956 85.51 3.63  1987 56.17 1.12 
1957 97.72 3.17  1988 63.28 1.00 
1958 54.20 2.75  1989 57.00 1.03 
1959 45.42 3.35  1990 48.58 1.22 
1960 54.64 2.36  1991 39.96 1.31 
1961 54.11 3.73  1992 44.31 1.34 
1962 92.04 3.25  1993 41.43 1.51 
1963 91.27 2.62  1994 53.72 1.53 
1964 85.90 2.71  1995 49.44 1.43 
1965 100.68 2.68  1996 44.32 1.65 
1966 78.63 2.80  1997 46.63 1.43 
1967 90.34 2.37  1998 45.87 1.56 
1968 66.01 2.69  1999 43.99 1.61 
1969 77.48 2.43  2000 52.51 1.42 
1970 62.06 3.59  2001 47.21 1.77 
1971 50.38 2.50  2002 44.81 1.76 
1972 71.28 2.40  2003 44.42 4.26 
1973 60.15 2.12     
1974 77.48 1.69     
1975 60.85 1.82     
1976 42.03 1.19     
1977 43.68 1.57     
1978 58.80 2.01     
1979 57.88 2.40     
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Table A2.2. Annual index of standardized CPUE (lbs/hour) for opakapaka for the late time 
period (2003-2015), with relative coefficient of variation (relCV) included. Relative CV was 
calculated as the ratio of CV/min(CV). 

Year Estimated 
opakapaka CPUE 

relCV 

2003 5.93 1.32 
2004 5.16 1.32 
2005 5.69 1.31 
2006 4.78 1.33 
2007 5.21 1.18 
2008 6.15 1.11 
2009 6.60 1.03 
2010 5.77 1.21 
2011 6.63 1.06 
2012 5.19 1.19 
2013 4.68 1.10 
2014 6.54 1.00 
2015 8.08 1.03 
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Table A3. Convergence diagnostics for the Gelman Rubin, Geweke, and Heidelberger and 
Welch (HW) tests, along with autocorrelation at lags 1 and 5 for the opakapaka production 
model. Values shown are the upper confidence interval for the Gelman Rubin diagnostic, 
which when near 1 indicates convergence; the absolute value of the Z-score for the Geweke 
diagnostic, which when < 2 indicates convergence; and p values from the Heidelberger and 
Welch stationarity diagnostic for the full chain, which when > 0.05 indicates convergence. For 
the criteria based on individual chains (Geweke and Heidelberger and Welch diagnostics, and 
autocorrelation), the values shown are from the most extreme chain for each parameter.  

Parameters Gelman and 
Rubin 

Geweke HW 
stationarity 

HW half-
width 

Lag1 auto-
correlation 

Lag5 auto-
correlation 

BMSY 1.00063 1.60 0.14 Passed 0.52 0.11 
FMSY 1.00311 1.21 0.18 Passed 0.31 0.11 
HMSY 1.00313 1.20 0.17 Passed 0.31 0.11 
MSY 1.00104 1.63 0.15 Passed 0.24 0.08 
PMSY 1.00333 1.56 0.09 Passed 0.26 0.09 
R 1.00059 1.46 0.53 Passed 0.07 0.03 
K 1.00218 1.89 0.20 Passed 0.66 0.15 
M 1.00294 1.21 0.22 Passed 0.21 0.07 
q1 1.00175 1.33 0.34 Passed 0.65 0.16 
q2 1.00036 1.92 0.08 Passed 0.60 0.19 
rad 1.00019 1.95 0.05 Passed 0.38 0.10 
σ2 1.00014 1.82 0.06 Passed 0.41 0.11 
τ12 1.00000 2.91 0.06 Passed 0.11 0.01 
τ22 1.00006 0.98 0.40 Passed 0.01 0.01 
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Figure A1.1. Model diagnostics for the best fit Bernoulli model for the early (1948-2003) time 
period based on opakapaka data only. Diagnostic plots include plots of quantile residuals 
against model predicted values (to assess heteroscedasticity), histogram of quantile residuals 
against model predicted values (to assess heteroscedasticity), histogram of quantile residuals 
(to assess normality), and plots of quantile residuals against values of each predictor variable 
(to assess patterning in the predictors variables).  
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Figure A1.2. Model diagnostics for the best fit Bernoulli model for the recent (2003-2015) 
time period based on opakapaka data only. Diagnostic plots include plots of quantile 
residuals against model predicted values (to assess heteroscedasticity), histogram of quantile 
residuals (to assess normality), and plots of quantile residuals against values of each predictor 
variable (to assess patterning in the predictors variables). 
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Figure A1.3. Model diagnostics for the best fit Lognormal model for the early (1948-2003) 
time period based on opakapaka data only. Diagnostic plots include plots of quantile 
residuals against model predicted values (to assess heteroscedasticity), histogram of quantile 
residuals and the quantile-quantile plot (to assess normality), and plots of quantile residuals 
against values of each predictor variable (to assess patterning in the predictors variables). 
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Figure A1.4. Model diagnostics for the best fit Lognormal model for the recent (2003-2015) 
time period based on opakapaka data only. Diagnostic plots include plots of quantile 
residuals against model predicted values (to assess heteroscedasticity), histogram of quantile 
residuals and the quantile-quantile plot (to assess normality), and plots of quantile residuals 
against values of each predictor variable (to assess patterning in the predictors variables). 
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Figure A2. Goodness-of-fit values for alternative choices for the mean of the prior distribution 
of the initial proportion of carrying capacity (P1) for the opakapaka production model for the 
main Hawaiian Islands. 
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Figure A3. Observed and predicted CPUE for opakapaka in the main Hawaiian Islands from 
1949 through 2003. 
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Figure A4. Standardized residuals of observed versus predicted CPUE for opakapaka CPUE in 
the main Hawaiian Islands by fishing year from 1949-2003 and p values for linear regression 
hypothesis tests of whether standardized residuals had a temporal trend, were normally 
distributed, and had constant variance.
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Figure A5. Observed and predicted CPUE for opakapaka in the main Hawaiian Islands from 
2003 through 2015.
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Figure A6. Standardized residuals of observed versus predicted CPUE for opakapaka CPUE in 
the main Hawaiian Islands by fishing year from 2003-2015 and p values for linear regression 
hypothesis tests of whether standardized residuals had a temporal trend, were normally 
distributed, and had constant variance. 
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Appendix B. R code that calls WinBUGS used to fit base case assessment and 
projection model for the Deep 7 bottomfish complex in the main Hawaiian Islands 
from 1949-2015. 

############################################################## 

# d7_2018_baseWPSAR 

# Jon Brodziak, PIFSC, December 2010, updated by Annie Yau, May 2014 

# to two-CPUE time series. Updated further by Brian Langseth, April 2017 

 

# Catch is in million pounds 

# CPUE is in lbs/single-reporting day up before 10/1/2002, and lbs/hr thereafter 

 

# Time period for two-CPUE indices, 1949-2002 and 2002-2015 (calendar year) 

# and so use revised data entry structure. 

# The CVs for years where CPUE is not used must still be entered, so 

# that the code runs properly.  

 

# Single catchability value per index 

# Include fitting to survey biomass 

 

# Updated the survey to reflect a prior around the survey catchability 

# based on min and max effective radius, corresponding to min and max 

# scalar of 7.5-41.6, centered at 20.2 

 

# Updated November 14, 2017 

############################################################# 
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rm(list=ls()) 

DATA = read.csv("C:\\PathfilenameToInputData\\Datafile.csv",header=T) 

 

head(DATA) 

 

addname <- 'd7_2018_base_proj'   ##<--------name of model---------- # change accordingly 

src.dir<-paste('C:\\PathfilenameOfSourceDirectory') 

dir.create(src.dir) 

dest.dir <- src.dir # where you want files copied to 

setwd(src.dir) 

 

library(R2WinBUGS)  # Load the R2WinBUGS library 

library(coda) 

 

########################################################################## 

#Reported catches in 2016, 2017 to be used in projections 

 

RC_2016 = 0.281   #reported catch from 2016 (millions of lbs.) used in projections 

 

RC_2017 = 0.300   #2017 catch is mean of last 3 years empirical data - used in projections 

########################################################################## 

 

 

#MCMC sampling  

nt <- 20 # Thinning rate 
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ni <- 500000 # Number of iterations per chain 

nb <- 200000 #round(ni*(1/10)) # Number of draws to discard as burn in 

 

 

###################################################################### 

# DATA   

# model variable set-up 

###################################################################### 

###obs_CPUE_1 = na.rm(DATA$CPUE_1_1) 

# In this case, there is one CPUE set split at 2003 into two 

# Vector Catch() is total catch weight in thousand metric tons 1949-2015 

# Vector S1() is the Main Hawaiian Islands CPUE index 1949-2003 

# Vector S2() is the Main Hawaiian Islands CPUE index 2003-2015 

  

# sigma2 is process error 

# tau2 is observation error by survey 

 

NTIME <- length(DATA$Catch)  

Reported_Catch <- DATA$Catch   

 

UnrepCatch <- DATA$UnrepCatch 

 

#CPUE and relCV of CPUE 

CPUE_S1 <- DATA$CPUE_1 

CPUE_S2 <- DATA$CPUE_2 
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CPUE_S1_REL_CV <- DATA$CPUE_1_rel_CV[!is.na(DATA$CPUE_1_rel_CV)] #exclude 
NAs 

CPUE_S2_REL_CV <- DATA$CPUE_2_rel_CV[!is.na(DATA$CPUE_2_rel_CV)] #exclude 
NAs 

 

#Accounting of time series length and dealing with NAs 

NCPUE_S1_1=0 

NCPUE_S1_MISS=0 

NCPUE_S1_2 <- max(which(!is.na(DATA$CPUE_1))) #end year of first time series 

if (match(NA, CPUE_S1)>0 & match(NA,CPUE_S1)!=(NCPUE_S1_2+1)){ #if there is an NA 
in first time period, prior to when the first time period ends 

  NCPUE_S1_1 <- match(NA, CPUE_S1)-1 #last year prior to first NA 

  NCPUE_S1_MISS <- length(DATA$CPUE_1[is.na(DATA$CPUE_1)]) + 
max(which(!is.na(DATA$CPUE_1)))-length(CPUE_S1) # Total missing values within time 
series (last positive + total NAs - total length) 

} 

NCPUE_S1_2 <- max(which(!is.na(DATA$CPUE_1))) #end year of first time series 

NCPUE_S1_3 <- length(DATA$CPUE_1) #end year of all time series 

 

#Survey biomass and SE estimate for 2016 calendar year. From Ault et al Tech Memo.  

#Convert from kg to million lbs 

Bio2017 <- 4604640/1000000*2.20462 /(25892*194.89) 

s_eta2 <- (891127.6/1000000*2.20462 /(25892*194.89))^2 

s_CV <- sqrt(s_eta2)/Bio2017 

s_eta2log <- log(s_CV*s_CV+1) 

 

######################### 
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# model parameters 

######################### 

 

Target_K_Prior_avg <- 29 

CV_K <- 0.5 

 

Target_r_Prior_avg <- 0.10 

CV_r <- 0.25 

 

Target_P1_Prior_avg <- 0.53 

CV_P1 <- 0.2 

 

M_shape <- 0.5 

M_scale <- 0.5 

 

process_shape <- 0.2 

process_scale <- 0.1 

 

observation_shape <- 0.2 

observation_scale <- 1.0 

 

q_lo <- 0.00001     

q_hi <- 100000 

 

Target_rad_Prior_avg <-20.2 
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CV_rad <- 0.5 

 

LB <- 0.6 

UB <- 1.4 

 

proj_LB <- 0.6   

proj_UB <- 1.4 

 

pLIM_B <- 0.844 

 

UC_ratio <-1.06 

 

start_TAC <- 0.000  #Values for setting up catches for projections 0-1 million lbs. by 0.002*1 
million 

mesh_TAC <- 0.002 

NTAC <- 501 

 

 

############################################################### 

# Bundle Data 

############################################################### 

 

win.data <- list( 

   

  NTIME = NTIME, 

  Reported_Catch = Reported_Catch, 
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  UnrepCatch = UnrepCatch, 

   

  CPUE_S1 = CPUE_S1, 

  CPUE_S2 = CPUE_S2, 

  CPUE_S1_REL_CV = CPUE_S1_REL_CV, 

  CPUE_S2_REL_CV = CPUE_S2_REL_CV, 

  NCPUE_S1_1 = NCPUE_S1_1, 

  NCPUE_S1_MISS = NCPUE_S1_MISS, 

  NCPUE_S1_2 = NCPUE_S1_2, 

  NCPUE_S1_3 = NCPUE_S1_3, 

   

  Target_K_Prior_avg = Target_K_Prior_avg, 

  CV_K = CV_K, 

   

  Target_r_Prior_avg = Target_r_Prior_avg,  

  CV_r = CV_r, 

   

  Target_P1_Prior_avg = Target_P1_Prior_avg, 

  CV_P1 = CV_P1, 

   

  M_shape = M_shape, 

  M_scale = M_scale, 

   

  process_shape = process_shape, 

  process_scale = process_scale, 
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  observation_shape = observation_shape, 

  observation_scale = observation_scale, 

   

  q_lo = q_lo, 

  q_hi = q_hi, 

 

  Target_rad_Prior_avg = Target_rad_Prior_avg, 

  CV_rad = CV_rad,   

  LB = LB, 

  UB = UB, 

   

  pLIM_B = pLIM_B, 

   

  Bio2017 = Bio2017, 

 

  s_eta2log = s_eta2log, 

   

  proj_LB = proj_LB, 

  proj_UB = proj_UB, 

   

  RC_2016 = RC_2016, 

 

  RC_2017 = RC_2017, 
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  UC_ratio = UC_ratio, 

   

  start_TAC = start_TAC, 

  mesh_TAC = mesh_TAC, 

  NTAC = NTAC 

   

) # end data list 

 

## END DATA 

###################################################################   

 

# Define model written in WinBUGS code ------ 

model_code=paste0("model ",addname,".txt") 

sink(model_code)  # sink diverts R output to a connection.  

cat(" 

     

    model 

    { 

     

    ############################################################## 

    # PRIOR DISTRIBUTIONS 

    ############################################################## 

     

    # Lognormal prior for carrying capacity parameter, K 

    #(P1)########################################################## 
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    K_Prior_Precision <- 1.0/log(1.0+CV_K*CV_K) 

    K_Prior_avg <- log(Target_K_Prior_avg) - (0.5/K_Prior_Precision) 

    K ~ dlnorm(K_Prior_avg,K_Prior_Precision)I(0.001,200.0) 

     

    # Lognormal prior for intrinsic growth rate parameter, r 

    #(P2)########################################################## 

    r_Prior_Precision <- 1.0/log(1.0+CV_r*CV_r) 

    r_Prior_avg <- log(Target_r_Prior_avg) - (0.5/r_Prior_Precision) 

    r ~ dlnorm(r_Prior_avg,r_Prior_Precision)I(0.01,1.00) 

     

    # Gamma prior for production shape parameter, M 

    #(P3)########################################################## 

    M ~ dgamma(M_shape, M_scale) 

     

    # Uniform prior for CPUE catchability coefficients 

    # in the interval (0.0001,10000), q1 and q2 

    #(P4)########################################################## 

    q1 ~ dunif(q_lo, q_hi) 

    q2 ~ dunif(q_lo, q_hi) 

 

    # Lognormal prior for effective radius for survey 

    #(P4.b)########################################################## 

    rad_Prior_Precision <- 1.0/log(1.0+CV_rad*CV_rad) 

    rad_Prior_avg <- log(Target_rad_Prior_avg) - (0.5/rad_Prior_Precision) 

    rad ~ dlnorm(rad_Prior_avg,rad_Prior_Precision)I(7.5,41.6) 
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    q3 <- 250000/(rad*rad*3.14159) 

     

    # Inverse gamma prior for process error variance, sigma2 

    #(P5)########################################################## 

    isigma2 ~ dgamma(process_shape,process_scale)I(0.000001,1000000) 

    sigma2 <- 1/isigma2 

     

    # Inverse gamma prior for observation error variance, tau2 

    #(P6)########################################################## 

    itau2_1   ~ dgamma(observation_shape,observation_scale)I(0.000001,1000000) 

    tau2_1  <- 1/itau2_1 

     

    itau2_2   ~ dgamma(observation_shape,observation_scale)I(0.000001,1000000) 

    tau2_2   <- 1/itau2_2 

     

    # Lognormal priors for unobserved states, the time series of proportions of K, P[] 

    # MHI time catch series starts in FY1949 and ends in FY2015, n=67 

    #(P7)########################################################## 

    P1_Prior_Precision <- 1.0/log(1.0+CV_P1*CV_P1) 

    P1_Prior_avg <-log(Target_P1_Prior_avg) - (0.5/P1_Prior_Precision) 

    P[1] ~ dlnorm(P1_Prior_avg,P1_Prior_Precision) I(0.0001,10000) 

     

    # Catch is uniformly distributed on the interval [lower, upper] 

    #(P8)########################################################## 

    lower[1] <- LB*UnrepCatch[1] + Reported_Catch[1] 
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    upper[1] <- UB*UnrepCatch[1] + Reported_Catch[1] 

    Catch[1] ~ dunif(lower[1],upper[1]) 

     

    ############################################################## 

    # PROCESS DYNAMICS 

    ############################################################## 

    for (i in 2:NTIME) { 

    Pmean[i] <- log(max(P[i-1] + r*P[i-1]*(1-pow(P[i-1],M)) - Catch[i-1]/K,0.0001)) 

    P[i]  ~ dlnorm(Pmean[i],isigma2)I(0.0001,10000) 

    lower[i] <- LB*UnrepCatch[i] + Reported_Catch[i] 

    upper[i] <- UB*UnrepCatch[i] + Reported_Catch[i] 

    Catch[i] ~ dunif(lower[i],upper[i]) 

    } 

 

    Pmean2016 <- log(max(P[NTIME] + r*P[NTIME]*(1-pow(P[NTIME],M)) - 
Catch[NTIME]/K,0.0001)) 

    P2016 ~ dlnorm(Pmean2016,isigma2)I(0.0001,10000) 

    C2016lo <- LB*0.301106 + 0.281079 

    C2016hi <- UB*0.301106 + 0.281079 

    Catch2016 ~ dunif(C2016lo,C2016hi) 

    Pmean2017 <- log(max(P2016 + r*P2016*(1-pow(P2016,M)) - Catch2016/K,0.0001)) 

    P2017 ~ dlnorm(Pmean2017,isigma2)I(0.0001,10000) 

 

 

    ############################################################## 

    # LIKELIHOOD OF OBSERVED CPUE 
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    ############################################################## 

     

    # Deep 7 bottomfish CPUE lLIKELIHOOD, 1949-2003 
P[(NCPUE_S1_1+NCPUE_S1_MISS+1):NCPUE_S1_2] 

    #(L1)########################################################## 

    for (i in (NCPUE_S1_1+NCPUE_S1_MISS+1):NCPUE_S1_2) { 

    CPUE_mean[i] <- log(q1*K*P[i]) 

    Precision_CPUE[i] <- itau2_1/(CPUE_S1_REL_CV[i]*CPUE_S1_REL_CV[i]) 

    CPUE_S1[i] ~ dlnorm(CPUE_mean[i],Precision_CPUE[i]) 

    LOG_RESID1[i] <- log(CPUE_S1[i]) - log(q1*K*P[i]) 

    } 

     

    # Deep 7 bottomfish CPUE lLIKELIHOOD, 2003-2015 P[(NCPUE_S1_2+1):NCPUE_S1_3] 

    #(L2)########################################################## 

    for (i in (NCPUE_S1_2):NCPUE_S1_3) { 

    CPUE_mean2[i] <- log(q2*K*P[i]) 

    Precision_CPUE2[i] <- itau2_2/(CPUE_S2_REL_CV[i]*CPUE_S2_REL_CV[i]) 

    CPUE_S2[i] ~ dlnorm(CPUE_mean2[i],Precision_CPUE2[i]) 

    LOG_RESID2[i] <- log(CPUE_S2[i]) - log(q2*K*P[i]) 

    } 

 

    # survey likelihood, for 2017 estimate 

    #(L3)########################################################## 

    survey_mean <- log(P2017*K /(q3*25892)) 

    Precision_survey <- 1/s_eta2log 

    Bio2017 ~ dlnorm(survey_mean,Precision_survey) 
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    LOG_RESID3 <- log(Bio2017) - log(P2017*K /(q3*25892)) 

 

     

    # Compute LOG_RSS and LOG_RMSE 

    ############################################################## 

    # LOG_RSS1 <- inprod(LOG_RESID1[1:NCPUE_S1_1], LOG_RESID1[1:NCPUE_S1_1]) 
+ 

    LOG_RSS1 <- inprod(LOG_RESID1[(NCPUE_S1_1+NCPUE_S1_MISS+1):NCPUE_S1_2], 
LOG_RESID1[(NCPUE_S1_1+NCPUE_S1_MISS+1):NCPUE_S1_2])  

 

    LOG_RSS2 <- inprod(LOG_RESID2[(NCPUE_S1_2):NCPUE_S1_3], 
LOG_RESID2[(NCPUE_S1_2):NCPUE_S1_3]) 

     

    LOG_RSS3 <- inprod(LOG_RESID3, LOG_RESID3) 

 

    LOG_RMSE1 <- sqrt(LOG_RSS1/(NCPUE_S1_2-NCPUE_S1_MISS)) 

     

    LOG_RMSE2 <- sqrt(LOG_RSS2/(NCPUE_S1_3-(NCPUE_S1_2-1))) 

 

    LOG_RMSE3 <- sqrt(LOG_RSS3) 

     

     

    # Compute standardized log-scale residuals, predicted CPUE, and unscaled residuals 

    ############################################################## 

    # for (i in 1:NCPUE_S1_1) { 

    # STD_LOG_RESID1[i] <- LOG_RESID1[i]/LOG_RMSE1 
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    # PRED_CPUE[i] <- exp(CPUE_mean[i]) ## PRED_CPUE[i] <- exp(log(CPUE_mean[i])) 

    # RESID1[i] <- CPUE_S1[i] - PRED_CPUE[i] 

    # } 

     

    for (i in (NCPUE_S1_1+NCPUE_S1_MISS+1):NCPUE_S1_2) { 

    STD_LOG_RESID1[i] <- LOG_RESID1[i]/LOG_RMSE1 

    PRED_CPUE[i] <- exp(CPUE_mean[i]) ## PRED_CPUE[i] <- exp(log(CPUE_mean[i])) 

    RESID1[i] <- CPUE_S1[i] - PRED_CPUE[i] 

    } 

     

    for (i in (NCPUE_S1_2):NCPUE_S1_3) { 

    STD_LOG_RESID2[i] <- LOG_RESID2[i]/LOG_RMSE2 

    PRED_CPUE2[i] <- exp(CPUE_mean2[i]) 

    RESID2[i] <- CPUE_S2[i] - PRED_CPUE2[i] 

    } 

 

    STD_LOG_RESID3 <- LOG_RESID3/LOG_RMSE2 

    PRED_Bio2017 <- exp(survey_mean) 

    RESID3 <- Bio2017 - PRED_Bio2017 

 

     

    # Compute RSS and RMSE for MHI CPUE 

    ############################################################## 

    #RSS1 <- inprod(RESID1[1:NCPUE_S1_1], RESID1[1:NCPUE_S1_1]) + 

    RSS1 <- inprod(RESID1[(NCPUE_S1_1+NCPUE_S1_MISS+1):NCPUE_S1_2], 
RESID1[(NCPUE_S1_1+NCPUE_S1_MISS+1):NCPUE_S1_2]) 
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    RSS2 <- inprod(RESID2[(NCPUE_S1_2):NCPUE_S1_3], 
RESID2[(NCPUE_S1_2):NCPUE_S1_3]) 

     

    RSS3 <- inprod(RESID3,RESID3) 

 

    RMSE1 <- sqrt(RSS1/(NCPUE_S1_2-NCPUE_S1_MISS)) 

     

    RMSE2 <- sqrt(RSS2/(NCPUE_S1_3-(NCPUE_S1_2-1))) 

 

    RMSE3 <- sqrt(RSS3) 

     

    ############################################################### 

    # STOCK ASSESSMENT QUANTITIES OF INTEREST 

    ############################################################### 

     

    # Compute exploitation rate and biomass time series 

    #(QOI1)######################################################### 

    # MHI 1949-2015 P[1:NTIME] 

    for (i in 1:NTIME) { 

    B[i] <- P[i]*K 

    H[i] <- min(Catch[i]/B[i],0.999) 

    F[i] <- -log(1-H[i]) 

    }   

     

    # Compute MSY reference points 
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    #(QOI2)######################################################### 

    BMSY <- K*pow(M+1.0,(-1.0/M)) 

    MSY <- r*BMSY*(1.0-(1.0/(M+1.0))) 

    HMSY <- min(r*(1.0-(1.0/(M+1.0))),0.999) 

    PMSY <- BMSY/K 

    FMSY <- -log(1-HMSY) 

    CPUE_MSY <- q2*BMSY 

     

    # Compute relative biomass and harvest, BSTATUS and HSTATUS 

    #(QOI3)######################################################### 

    for (i in 1:NTIME) { 

    BSTATUS[i] <- B[i]/BMSY 

    HSTATUS[i] <- H[i]/HMSY 

    production[i] <- r*B[i]*(1-pow(P[i],M)) 

    } 

     

    # Compute probabilities of H[i] > HMSY, B[i] < BMSY,  

    # and B[i] < pLIM_B*BMSY, a minimum biomass limit 

    #(QOI4)########################################################## 

    for (i in 1:NTIME) { 

    pOFL_H[i] <- step(HSTATUS[i] - 1.0) 

    pBMSY_B[i] <- step(1.0 - BSTATUS[i]) 

    pOFL_B[i] <- step(pLIM_B - BSTATUS[i]) 

    } 
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################################################################# 

  #####   PROJECTIONS 

    ################################################################# 

    # Fishing Year 2016 Projection 

    proj_Pmean2016 <- (max(P[NTIME] + r*P[NTIME]*(1-pow(P[NTIME],M)) - 
Catch[NTIME]/K,0.0001)) 

 

    B[NTIME+1] <- proj_Pmean2016*K 

 

    UC[1] <- UC_ratio*RC_2016 

     

    lower[NTIME+1] <- proj_LB*UC[1] + RC_2016 

    upper[NTIME+1] <- proj_UB*UC[1] + RC_2016 

 

    proj_C2016 ~ dunif(lower[NTIME+1],upper[NTIME+1]) 

     

    H[NTIME+1] <- min(proj_C2016/B[NTIME+1],0.999) 

     

    BSTATUS[NTIME+1] <- B[NTIME+1]/BMSY  

    HSTATUS[NTIME+1] <- H[NTIME+1]/HMSY 

    production[NTIME+1] <- r*B[NTIME+1]*(1-pow(proj_Pmean2016,M)) 

     

    pOFL_H[NTIME+1] <- step(HSTATUS[NTIME+1] - 1.0) 

    pBMSY_B[NTIME+1] <- step(1.0 - BSTATUS[NTIME+1]) 

    pOFL_B[NTIME+1] <- step(pLIM_B - BSTATUS[NTIME+1]) 
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    # Fishing Year 2017 Projection 

    ################################################################# 

    proj_Pmean2017 <- (max(proj_Pmean2016 + r*proj_Pmean2016*(1-
pow(proj_Pmean2016,M)) - proj_C2016/K,0.0001)) 

 

    B[NTIME+2] <- proj_Pmean2017*K 

     

    UC[2] <- UC_ratio*RC_2017 

     

    lower[NTIME+2] <- proj_LB*UC[2] + RC_2017 

    upper[NTIME+2] <- proj_UB*UC[2] + RC_2017 

     

    proj_C2017 ~ dunif(lower[NTIME+2],upper[NTIME+2]) 

     

    H[NTIME+2] <- min(proj_C2017/B[NTIME+2],0.999) 

     

    BSTATUS[NTIME+2] <- B[NTIME+2]/BMSY  

    HSTATUS[NTIME+2] <- H[NTIME+2]/HMSY 

    production[NTIME+2] <- r*B[NTIME+2]*(1-pow(proj_Pmean2017,M)) 

     

    pOFL_H[NTIME+2] <- step(HSTATUS[NTIME+2] - 1.0) 

    pBMSY_B[NTIME+2] <- step(1.0 - BSTATUS[NTIME+2]) 

    pOFL_B[NTIME+2] <- step(pLIM_B - BSTATUS[NTIME+2]) 
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    # Fishing Year 2018-2019 Projection 
################################################################# 

    proj_lower <- proj_LB*UC_ratio 

    proj_upper <- proj_UB*UC_ratio 

     

    proj_Pmean <- (max(proj_Pmean2017 + r*proj_Pmean2017*(1-pow(proj_Pmean2017,M)) - 
proj_C2017/K,0.0001)) 

    B[NTIME+3] <- proj_Pmean*K  #2018 biomass 

     

    BSTATUS[NTIME+3] <- B[NTIME+3]/BMSY  

    production[NTIME+3] <- r*B[NTIME+3]*(1-pow(proj_Pmean,M))  

    pBMSY_B[NTIME+3] <- step(1.0 - BSTATUS[NTIME+3]) 

    pOFL_B[NTIME+3] <- step(pLIM_B - BSTATUS[NTIME+3]) 

     

    for (j in 1:NTAC) 

    { 

#2018-2019 

    proj_TAC[j] <- start_TAC+mesh_TAC*(j-1) 

 

    proj_UC_ratio1[j] ~ dunif(proj_lower,proj_upper) 

    proj_UC1[j] <- proj_UC_ratio1[j]*proj_TAC[j] 

    proj_C1[j] <- proj_TAC[j] + proj_UC1[j] 

    proj_H1[j] <- min(proj_C1[j]/B[NTIME+3],0.999) 

    proj_HSTATUS1[j] <- proj_H1[j]/HMSY 

    proj_pOFL_H1[j] <- step(proj_HSTATUS1[j] - 1.0)   
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    proj_P2019[j] <- max(proj_Pmean + r*proj_Pmean*(1-pow(proj_Pmean,M)) - 
proj_C1[j]/K,0.0001)   

    proj_B2019[j] <- proj_P2019[j]*K 

 

    proj_BSTATUS[j] <- proj_B2019[j]/BMSY   

    proj_pOFL_B[j] <- step(pLIM_B - proj_BSTATUS[j]) 

    proj_UC_ratio2[j] ~ dunif(proj_lower,proj_upper) 

    proj_UC2[j] <- proj_UC_ratio2[j]*proj_TAC[j] 

    proj_C2[j] <- proj_TAC[j] + proj_UC2[j] 

    proj_H2[j] <- min(proj_C2[j]/proj_B2019[j],0.999) 

    proj_HSTATUS2[j] <- proj_H2[j]/HMSY 

    proj_pOFL_H2[j] <- step(proj_HSTATUS2[j] - 1.0 

 

 

    proj_P2020[j] <- max(proj_P2019[j] + r*proj_P2019[j]*(1-pow(proj_P2019[j],M)) - 
proj_C2[j]/K,0.0001)  

    proj_B2020[j]<- proj_P2020[j]*K 

 

    proj_UC_ratio3[j] ~ dunif(proj_lower,proj_upper) 

    proj_UC3[j] <- proj_UC_ratio3[j]*proj_TAC[j] 

    proj_C3[j] <- proj_TAC[j] + proj_UC3[j] 

    proj_H3[j] <- min(proj_C3[j]/proj_B2020[j],0.999) 

    proj_HSTATUS3[j] <- proj_H3[j]/HMSY 

    proj_pOFL_H3[j] <- step(proj_HSTATUS3[j] - 1.0) 

    proj_BSTATUS3[j]<- proj_B2020[j]/BMSY 

    proj_pOFL_B3[j] <- step(pLIM_B - proj_BSTATUS3[j]) 



165 

 

 

    proj_P2021[j] <- max(proj_P2020[j] + r*proj_P2020[j]*(1-pow(proj_P2020[j],M)) - 
proj_C3[j]/K,0.0001)  

    proj_B2021[j] <-proj_P2021[j]*K 

 

    proj_UC_ratio4[j] ~ dunif(proj_lower,proj_upper) 

    proj_UC4[j] <- proj_UC_ratio4[j]*proj_TAC[j] 

    proj_C4[j] <- proj_TAC[j] + proj_UC4[j] 

    proj_H4[j] <- min(proj_C4[j]/proj_B2021[j],0.999) 

    proj_HSTATUS4[j] <- proj_H4[j]/HMSY 

    proj_pOFL_H4[j] <- step(proj_HSTATUS4[j] - 1.0) 

    proj_BSTATUS4[j]<- proj_B2021[j]/BMSY 

    proj_pOFL_B4[j] <- step(pLIM_B - proj_BSTATUS4[j]) 

 

    proj_P2022[j] <- max(proj_P2021[j] + r*proj_P2021[j]*(1-pow(proj_P2021[j],M)) - 
proj_C4[j]/K,0.0001) 

    proj_B2022[j] <- proj_P2022[j]*K 

 

    proj_UC_ratio5[j] ~ dunif(proj_lower,proj_upper) 

    proj_UC5[j] <- proj_UC_ratio5[j]*proj_TAC[j] 

    proj_C5[j] <- proj_TAC[j] + proj_UC5[j] 

    proj_H5[j] <- min(proj_C5[j]/proj_B2022[j], 0.999) 

    proj_HSTATUS5[j] <- proj_H5[j]/HMSY 

    proj_pOFL_H5[j] <- step(proj_HSTATUS5[j] - 1.0) 

 



166 

    proj_BSTATUS5[j] <- proj_B2022[j]/BMSY 

    proj_pOFL_B5[j] <- step(pLIM_B - proj_BSTATUS5[j]) 

 

    } 

     

    ######################## 

    } ## END OF WinBUGS MODEL 

     

    ",fill=TRUE) 

sink()      # ends the last diversion 

 

################################################################### 

# END OF CODE/MODEL 

################################################################### 

 

#######################################################################  ------ 

############ Create list of inits for WinBUGS use #####################                                 

####################################################################### 

 

inits <- list(    # create inits list of functions 

   

  ## Initial Condition 1  

   

  list( 
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    Catch=c(0.889846783,0.778941737,0.824254018,0.762620337, 

            0.661370999,0.677419931,0.553893321,0.709836464,0.856255301, 

            0.563444848,0.518085637,0.429625612,0.33919519,0.446999966, 

            0.560303076,0.543231463,0.586733137,0.469831635,0.664149948, 

            0.524969584,0.493058543,0.42888162,0.3657332,0.653303227, 

            0.49559336,0.684927867,0.637403776,0.67817695,0.712558533, 

            0.870372753,0.789619688,0.746366372,0.94938799,0.941233443, 

            1.191552026,0.930339634,1.24944603,1.245210744,1.53397504, 

            1.602716019,1.60503175,1.219962022,0.840492747,0.970455548, 

            0.720273837,0.892439097,0.974311859,0.769418048,0.850288559, 

            0.782225449,0.530352097,0.750185256,0.56962955,0.436408415, 

            0.527079244,0.394814741,0.470591447,0.344546487,0.423234016, 

            0.401774757,0.535873576,0.438224507,0.586167313,0.445163771, 

            0.446142896,0.653405446,0.638883526), 

    

    Catch2016 = 0.58, 

     

    r=0.05, 

     

    P=c(rep(0.5,32), rep(0.5, NTIME-32)),  

     

    P2016=0.5, 

    P2017=0.5, 

     

    K=45.0, 
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    M=1.0, 

     

    q1=10.0, 

    q2=10.0, 

    rad=20.2, 

     

    isigma2=100, 

     

    itau2_1=100, 

    itau2_2=100, 

     

    proj_C2016= 0.579, 

     

    proj_C2017=0.618,  

     

    proj_UC_ratio1=rep(1.06, 501), 

     

    proj_UC_ratio2=rep(1.06, 501), 

     

    proj_UC_ratio3=rep(1.06, 501), 

     

    proj_UC_ratio4=rep(1.06, 501), 

     

    proj_UC_ratio5=rep(1.06, 501) 
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  ) ##END init 1 

   

  ## Initial Condition 2  

   

  ,list( 

     

    Catch=c(0.889846783,0.778941737,0.824254018,0.762620337, 

            0.661370999,0.677419931,0.553893321,0.709836464,0.856255301, 

            0.563444848,0.518085637,0.429625612,0.33919519,0.446999966, 

            0.560303076,0.543231463,0.586733137,0.469831635,0.664149948, 

            0.524969584,0.493058543,0.42888162,0.3657332,0.653303227, 

            0.49559336,0.684927867,0.637403776,0.67817695,0.712558533, 

            0.870372753,0.789619688,0.746366372,0.94938799,0.941233443, 

            1.191552026,0.930339634,1.24944603,1.245210744,1.53397504, 

            1.602716019,1.60503175,1.219962022,0.840492747,0.970455548, 

            0.720273837,0.892439097,0.974311859,0.769418048,0.850288559, 

            0.782225449,0.530352097,0.750185256,0.56962955,0.436408415, 

            0.527079244,0.394814741,0.470591447,0.344546487,0.423234016, 

            0.401774757,0.535873576,0.438224507,0.586167313,0.445163771, 

            0.446142896,0.653405446,0.638883526), 

     

    Catch2016 = 0.58, 

     

    r=0.15, 
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    P=c(rep(0.5,32), rep(0.5, NTIME-32)),  

     

    P2016=0.5, 

    P2017=0.5, 

     

    K=15.0, 

     

    M=1.0, 

     

    q1=10.0, 

    q2=10.0, 

    rad=20.2, 

     

    isigma2=100, 

     

    itau2_1=100, 

    itau2_2=100, 

     

    proj_C2016= 0.579, 

     

    proj_C2017=0.618,  

     

    proj_UC_ratio1=rep(1.06, 501), 
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    proj_UC_ratio2=rep(1.06, 501), 

     

    proj_UC_ratio3=rep(1.06, 501), 

     

    proj_UC_ratio4=rep(1.06, 501), 

     

    proj_UC_ratio5=rep(1.06, 501) 

     

     

  )  ##END init 2 

   

  ## Initial Condition 3  

   

  ,list( 

     

    Catch=c(0.889846783,0.778941737,0.824254018,0.762620337, 

            0.661370999,0.677419931,0.553893321,0.709836464,0.856255301, 

            0.563444848,0.518085637,0.429625612,0.33919519,0.446999966, 

            0.560303076,0.543231463,0.586733137,0.469831635,0.664149948, 

            0.524969584,0.493058543,0.42888162,0.3657332,0.653303227, 

            0.49559336,0.684927867,0.637403776,0.67817695,0.712558533, 

            0.870372753,0.789619688,0.746366372,0.94938799,0.941233443, 

            1.191552026,0.930339634,1.24944603,1.245210744,1.53397504, 

            1.602716019,1.60503175,1.219962022,0.840492747,0.970455548, 

            0.720273837,0.892439097,0.974311859,0.769418048,0.850288559, 
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            0.782225449,0.530352097,0.750185256,0.56962955,0.436408415, 

            0.527079244,0.394814741,0.470591447,0.344546487,0.423234016, 

            0.401774757,0.535873576,0.438224507,0.586167313,0.445163771, 

            0.446142896,0.653405446,0.638883526), 

     

    Catch2016 = 0.58, 

     

    r=0.10, 

     

    P=c(rep(0.5,32), rep(0.5, NTIME-32)),  

     

    P2016=0.5, 

    P2017=0.5, 

     

    K=30.0, 

     

    M=1.0, 

     

    q1=10.0, 

    q2=10.0, 

    rad=20.2, 

     

    isigma2=100, 

     

    itau2_1=100, 



173 

    itau2_2=100, 

     

    proj_C2016= 0.579, 

     

    proj_C2017=0.618,  

     

    proj_UC_ratio1=rep(1.06, 501), 

     

    proj_UC_ratio2=rep(1.06, 501), 

     

    proj_UC_ratio3=rep(1.06, 501), 

     

    proj_UC_ratio4=rep(1.06, 501), 

     

    proj_UC_ratio5=rep(1.06, 501) 

     

  )##END init 3 

)  ## close list of functions 

 

##### end initials function ############################################ 

######################################################################## 

 

## Parameters to estimate 

######################################################################## 
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params <- c( 

   

  ## model parameters ## 

  "K","r","M", "q1","q2","sigma2", "tau2_1","tau2_2",”q3”,”rad”, 

   

  ## time-series derived variables ## 

  "P","B","H","PRED_CPUE","PRED_CPUE2","PRED_Bio2017", 

   

  ## management metrics ## 

  "MSY","BMSY","HMSY", 

 

  "MSY","PMSY","BMSY","HMSY","BSTATUS","HSTATUS","FMSY",  

  "pOFL_H","pOFL_B","pBMSY_B",                                                                  

   

  ## statistics and diagnoses ## 

  "STD_LOG_RESID1", "STD_LOG_RESID2", "STD_LOG_RESID3",  

  "LOG_RESID1", "LOG_RESID2", "LOG_RESID3","RESID1", "RESID2", "RESID3", 

  "LOG_RSS1", "LOG_RSS2", "LOG_RSS3", "LOG_RMSE1", "LOG_RMSE2", 

  "LOG_RMSE3","RSS1", "RSS2", "RSS3", "RMSE1", "RMSE2", "RMSE3", 

   

  ## projection quantities to monitor ##   

 

  "B", "proj_B2019", "proj_B2020", "proj_B2021", "proj_B2022", "proj_H1", 

  "proj_H2", "proj_H3", "proj_H4", "proj_H5", "proj_pOFL_H1", "proj_pOFL_H2",  

  "proj_pOFL_H3", "proj_pOFL_H4", "proj_pOFL_H5", "pOFL_B", "proj_pOFL_B", 
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  "proj_pOFL_B3", "proj_pOFL_B4", "proj_pOFL_B5" 

 

) 

 

begin_time = proc.time()[3]   

nc <- length(inits)    # Number of Markov chains, default is 3  

###################################################################  

# Start Gibbs sampling, cycle through the initials 

 

bugs(win.data,inits,params,model_code,n.chains=nc,n.iter=ni,n.burnin=nb,n.thin=nt, 

     debug=FALSEFALSE,codaPkg=TRUE,bugs.directory="c:/WinBUGS/", 

     working.directory=src.dir) 

 

################################################################### 

 

end_time = proc.time()[3] 

print(paste("RUN_COST = ",(end_time-begin_time)/60," mins",sep="")) 

 

####################################################################### 
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Appendix C. R code that calls WinBUGS used to fit assessment model for 
opakapaka in the main Hawaiian Islands from 1949-2015. 

############################################################## 

# paka_2018_baseWPSAR 

# Jon Brodziak, PIFSC, December 2010, updated by Annie Yau, May 2014 

# to two-CPUE time series. Updated further by Brian Langseth, April 2017 

 

# Catch is in million pounds 

# CPUE is in lbs/single-reporting day up before 10/1/2002 (calendar year), and lbs/hr thereafter 

 

# Time period for two-CPUE indices, 1949-2002 and 2002-2015 (calendar year) 

# and so use revised data entry structure. 

# The CVs for years where CPUE is not used must still be entered, so 

# that the code runs properly.  

 

# Single catchability value per index 

# Include fitting to survey biomass, with sd of survey on scale of log of data 

# Use actual 2016 catch to set catch for that year 

# Use natural mortality of 0.156 

 

# Data changed for paka only model. prior on K changed based on ratio 

# of paka to total in the survey estimate. 

 

# Updated the survey to reflect a prior around the survey catchability 

# based on min and max effective radiuas, corresponding to min and max 

# scalar of 7.5-41.6, centered at 20.2 
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# Updated December 18, 2017 

############################################################# 

 

rm(list=ls()) 

DATA = read.csv("C:\\PathfilenameToInputData\\Datafile.csv",header=T) 

head(DATA) 

 

addname <- 'paka_2018_baseWPSAR'  ##<--------name of model---------- # change accordingly 

src.dir <- paste('C:\\PathfilenameOfSourceDirectory') # Change accordingly 

dir.create(src.dir) 

dest.dir <- src.dir # where you want files copied to 

setwd(src.dir) 

 

library(R2WinBUGS)  # Load the R2WinBUGS library 

library(coda) 

 

nt <- 20     # Thinning rate 

ni <- 500000 # Number of total iterations per chain, including burn-in  

nb <- 200000 #round(ni*(1/10)) # Number of draws to discard as burn in 

 

 

###################################################################### 

# DATA   

# model variable set-up 
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###################################################################### 

###obs_CPUE_1 = na.rm(DATA$CPUE_1_1) 

# In this case, there is one CPUE set split at 2003 (fishing year) into two 

# Vector Catch() is total catch weight in thousand metric tons 1949-2015 

# Vector S1() is the Main Hawaiian Islands CPUE index 1949-2003 

# Vector S2() is the Main Hawaiian Islands CPUE index 2003-2015 

 

# sigma2 is process error 

# tau2 is observation error  

 

NTIME <- length(DATA$Catch)  

Reported_Catch <- DATA$Catch   

 

UnrepCatch <- DATA$UnrepCatch 

 

#CPUE and relCV of CPUE 

CPUE_S1 <- DATA$CPUE_1 

CPUE_S2 <- DATA$CPUE_2 

CPUE_S1_REL_CV <- DATA$CPUE_1_rel_CV[!is.na(DATA$CPUE_1_rel_CV)] #exclude 
NAs 

CPUE_S2_REL_CV <- DATA$CPUE_2_rel_CV[!is.na(DATA$CPUE_2_rel_CV)] #exclude 
NAs 

 

#Accounting of time series length and dealing with NAs 

NCPUE_S1_1=0 

NCPUE_S1_MISS=0 
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NCPUE_S1_2 <- max(which(!is.na(DATA$CPUE_1))) #end year of first time series 

if (match(NA, CPUE_S1)>0 & match(NA,CPUE_S1)!=(NCPUE_S1_2+1)){ #if there is an NA 
in first time period, prior to when the first time period ends 

  NCPUE_S1_1 <- match(NA, CPUE_S1)-1 #last year prior to first NA 

  NCPUE_S1_MISS <- length(DATA$CPUE_1[is.na(DATA$CPUE_1)]) + 
max(which(!is.na(DATA$CPUE_1)))-length(CPUE_S1) # Total missing values within time 
series (last positive + total NAs - total length) 

} 

NCPUE_S1_2 <- max(which(!is.na(DATA$CPUE_1))) #end year of first time series 

NCPUE_S1_3 <- length(DATA$CPUE_1) #end year of all time series 

 

#Survey biomass and SE estimate for 2016 calendar year. From Ault et al Tech Memo.  

#Convert from kg to million lbs 

Bio2017 <- 3118160.5/1000000*2.20462 /(25892*194.89) 

s_eta2 <- (803815.3/1000000*2.20462 /(25892*194.89))^2 

s_CV <- sqrt(s_eta2)/Bio2017 

s_eta2log <- log(s_CV*s_CV+1) 

 

######################### 

# model parameters 

######################### 

 

Target_K_Prior_avg <- 19.6 

CV_K <- 0.5 

 

Target_r_Prior_avg <- 0.10 
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CV_r <- 0.25 

 

Target_P1_Prior_avg <- 0.52 

CV_P1 <- 0.2 

 

M_shape <- 0.5 

M_scale <- 0.5 

 

process_shape <- 0.2 

process_scale <- 0.1 

 

observation_shape <- 0.2 

observation_scale <- 1.0 

 

q_lo <- 0.00001     

q_hi <- 100000 

 

Target_rad_Prior_avg <-20.2 

CV_rad <- 0.5 

 

LB <- 0.6 

UB <- 1.4 

 

pLIM_B <- 0.844 
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############################################################### 

# Bundle Data 

############################################################### 

 

win.data <- list( 

   

  NTIME = NTIME, 

  Reported_Catch = Reported_Catch, 

  UnrepCatch = UnrepCatch, 

   

  CPUE_S1 = CPUE_S1, 

  CPUE_S2 = CPUE_S2, 

  CPUE_S1_REL_CV = CPUE_S1_REL_CV, 

  CPUE_S2_REL_CV = CPUE_S2_REL_CV, 

  NCPUE_S1_1 = NCPUE_S1_1, 

  NCPUE_S1_MISS = NCPUE_S1_MISS, 

  NCPUE_S1_2 = NCPUE_S1_2, 

  NCPUE_S1_3 = NCPUE_S1_3, 

   

  Target_K_Prior_avg = Target_K_Prior_avg, 

  CV_K = CV_K, 

   

  Target_r_Prior_avg = Target_r_Prior_avg,  

  CV_r = CV_r, 
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  Target_P1_Prior_avg = Target_P1_Prior_avg, 

  CV_P1 = CV_P1, 

   

  M_shape = M_shape, 

  M_scale = M_scale, 

   

  process_shape = process_shape, 

  process_scale = process_scale, 

   

  observation_shape = observation_shape, 

  observation_scale = observation_scale, 

   

  q_lo = q_lo, 

  q_hi = q_hi, 

   

  Target_rad_Prior_avg = Target_rad_Prior_avg, 

  CV_rad = CV_rad, 

 

  LB = LB, 

  UB = UB, 

   

  pLIM_B = pLIM_B, 

   

  Bio2017 = Bio2017, 
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  s_eta2log = s_eta2log 

   

) # end data list 

 

## END DATA 

###################################################################   

 

# Define model written in WinBUGS code ------ 

model_code=paste0("model ",addname,".txt") 

sink(model_code)  # sink diverts R output to a connection.  

cat(" 

     

    model 

    { 

     

    ############################################################## 

    # PRIOR DISTRIBUTIONS 

    ############################################################## 

     

    # Lognormal prior for carrying capacity parameter, K 

    #(P1)########################################################## 

    K_Prior_Precision <- 1.0/log(1.0+CV_K*CV_K) 

    K_Prior_avg <- log(Target_K_Prior_avg) - (0.5/K_Prior_Precision) 

    K ~ dlnorm(K_Prior_avg,K_Prior_Precision)I(0.001,200.0) 
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    # Lognormal prior for intrinsic growth rate parameter, r 

    #(P2)########################################################## 

    r_Prior_Precision <- 1.0/log(1.0+CV_r*CV_r) 

    r_Prior_avg <- log(Target_r_Prior_avg) - (0.5/r_Prior_Precision) 

    r ~ dlnorm(r_Prior_avg,r_Prior_Precision)I(0.01,1.00) 

     

    # Gamma prior for production shape parameter, M 

    #(P3)########################################################## 

    M ~ dgamma(M_shape, M_scale) 

     

    # Uniform prior for CPUE catchability coefficients, q1 and q2 

    #(P4)########################################################## 

    q1 ~ dunif(q_lo, q_hi) 

    q2 ~ dunif(q_lo, q_hi) 

     

    # Lognormal prior for effective radius for survey 

    #(P4.b)########################################################## 

    rad_Prior_Precision <- 1.0/log(1.0+CV_rad*CV_rad) 

    rad_Prior_avg <- log(Target_rad_Prior_avg) - (0.5/rad_Prior_Precision) 

    rad ~ dlnorm(rad_Prior_avg,rad_Prior_Precision)I(7.5,41.6) 

    q3 <- 250000/(rad*rad*3.14159) 

 

    # Inverse gamma prior for process error variance, sigma2 

    #(P5)########################################################## 

    isigma2 ~ dgamma(process_shape,process_scale)I(0.000001,1000000) 



185 

    sigma2 <- 1/isigma2 

     

    # Inverse gamma prior for observation error variance, tau2 

    #(P6)########################################################## 

    itau2_1   ~ dgamma(observation_shape,observation_scale)I(0.000001,1000000) 

    tau2_1  <- 1/itau2_1 

     

    itau2_2   ~ dgamma(observation_shape,observation_scale)I(0.000001,1000000) 

    tau2_2   <- 1/itau2_2 

     

    # Lognormal priors for unobserved states, the time series of proportions of K, P[] 

    # MHI time catch series starts in FY1949 and ends in FY2015, n=67 

    #(P7)########################################################## 

    P1_Prior_Precision <- 1.0/log(1.0+CV_P1*CV_P1) 

    P1_Prior_avg <-log(Target_P1_Prior_avg) - (0.5/P1_Prior_Precision) 

    P[1] ~ dlnorm(P1_Prior_avg,P1_Prior_Precision) I(0.0001,10000) 

     

    # Catch is uninformly distributed on the interval [lower, upper] 

    #(P8)########################################################## 

    lower[1] <- LB*UnrepCatch[1] + Reported_Catch[1] 

    upper[1] <- UB*UnrepCatch[1] + Reported_Catch[1] 

    Catch[1] ~ dunif(lower[1],upper[1]) 

     

    ############################################################## 

    # PROCESS DYNAMICS 



186 

    ############################################################## 

    for (i in 2:NTIME) { 

    Pmean[i] <- log(max(P[i-1] + r*P[i-1]*(1-pow(P[i-1],M)) - Catch[i-1]/K,0.0001)) 

    P[i]  ~ dlnorm(Pmean[i],isigma2)I(0.0001,10000) 

    lower[i] <- LB*UnrepCatch[i] + Reported_Catch[i] 

    upper[i] <- UB*UnrepCatch[i] + Reported_Catch[i] 

    Catch[i] ~ dunif(lower[i],upper[i]) 

    } 

 

    Pmean2016 <- log(max(P[NTIME] + r*P[NTIME]*(1-pow(P[NTIME],M)) - 
Catch[NTIME]/K,0.0001)) 

    P2016 ~ dlnorm(Pmean2016,isigma2)I(0.0001,10000) 

    C2016lo <- LB*0.277223 + 0.140722 

    C2016hi <- UB*0.277223 + 0.140722 

    Catch2016 ~ dunif(C2016lo,C2016hi) 

    Pmean2017 <- log(max(P2016 + r*P2016*(1-pow(P2016,M)) - Catch2016/K,0.0001)) 

    P2017 ~ dlnorm(Pmean2017,isigma2)I(0.0001,10000) 

 

 

    ############################################################## 

    # LIKELIHOOD OF OBSERVED CPUE 

    ############################################################## 

     

    # Deep 7 bottomfish CPUE LIKELIHOOD, 1949-2003 
P[(NCPUE_S1_1+NCPUE_S1_MISS+1):NCPUE_S1_2] 

    #(L1)########################################################## 
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    for (i in (NCPUE_S1_1+NCPUE_S1_MISS+1):NCPUE_S1_2) { 

    CPUE_mean[i] <- log(q1*K*P[i]) 

    Precision_CPUE[i] <- itau2_1/(CPUE_S1_REL_CV[i]*CPUE_S1_REL_CV[i]) 

    CPUE_S1[i] ~ dlnorm(CPUE_mean[i],Precision_CPUE[i]) 

    LOG_RESID1[i] <- log(CPUE_S1[i]) - log(q1*K*P[i]) 

    } 

     

    # Deep 7 bottomfish CPUE LIKELIHOOD, 2003-2015 P[(NCPUE_S1_2+1):NCPUE_S1_3] 

    #(L2)########################################################## 

    for (i in (NCPUE_S1_2):NCPUE_S1_3) { 

    CPUE_mean2[i] <- log(q2*K*P[i]) 

    Precision_CPUE2[i] <- itau2_2/(CPUE_S2_REL_CV[i]*CPUE_S2_REL_CV[i]) 

    CPUE_S2[i] ~ dlnorm(CPUE_mean2[i],Precision_CPUE2[i]) 

    LOG_RESID2[i] <- log(CPUE_S2[i]) - log(q2*K*P[i]) 

    } 

 

    # survey likelihood, for 2017 estimate 

    #(L3)########################################################## 

    survey_mean <- log(P2017*K /(q3*25892)) 

    Precision_survey <- 1/s_eta2log 

    Bio2017 ~ dlnorm(survey_mean,Precision_survey) 

    LOG_RESID3 <- log(Bio2017) - log(P2017*K/(q3*25892)) 

 

     

    # Compute LOG_RSS and LOG_RMSE 
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    ############################################################## 

    # LOG_RSS1 <- inprod(LOG_RESID1[1:NCPUE_S1_1], LOG_RESID1[1:NCPUE_S1_1]) 
+ 

    LOG_RSS1 <- inprod(LOG_RESID1[(NCPUE_S1_1+NCPUE_S1_MISS+1):NCPUE_S1_2], 
LOG_RESID1[(NCPUE_S1_1+NCPUE_S1_MISS+1):NCPUE_S1_2])  

 

    LOG_RSS2 <- inprod(LOG_RESID2[(NCPUE_S1_2):NCPUE_S1_3], 
LOG_RESID2[(NCPUE_S1_2):NCPUE_S1_3]) 

     

    LOG_RSS3 <- inprod(LOG_RESID3, LOG_RESID3) 

 

    LOG_RMSE1 <- sqrt(LOG_RSS1/(NCPUE_S1_2-NCPUE_S1_MISS)) 

     

    LOG_RMSE2 <- sqrt(LOG_RSS2/(NCPUE_S1_3-(NCPUE_S1_2-1))) 

 

    LOG_RMSE3 <- sqrt(LOG_RSS3) 

     

     

    # Compute standardized log-scale residuals, predicted CPUE, and unscaled residuals 

    ############################################################## 

    for (i in (NCPUE_S1_1+NCPUE_S1_MISS+1):NCPUE_S1_2) { 

    STD_LOG_RESID1[i] <- LOG_RESID1[i]/LOG_RMSE1 

    PRED_CPUE[i] <- exp(CPUE_mean[i]) ## PRED_CPUE[i] <- exp(log(CPUE_mean[i])) 

    RESID1[i] <- CPUE_S1[i] - PRED_CPUE[i] 

    } 
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    for (i in (NCPUE_S1_2):NCPUE_S1_3) { 

    STD_LOG_RESID2[i] <- LOG_RESID2[i]/LOG_RMSE2 

    PRED_CPUE2[i] <- exp(CPUE_mean2[i]) 

    RESID2[i] <- CPUE_S2[i] - PRED_CPUE2[i] 

    } 

 

    STD_LOG_RESID3 <- LOG_RESID3/LOG_RMSE2 

    PRED_Bio2017 <- exp(survey_mean) 

    RESID3 <- Bio2017 - PRED_Bio2017 

 

     

    # Compute RSS and RMSE for MHI CPUE 

    ############################################################## 

    #RSS1 <- inprod(RESID1[1:NCPUE_S1_1], RESID1[1:NCPUE_S1_1]) + 

    RSS1 <- inprod(RESID1[(NCPUE_S1_1+NCPUE_S1_MISS+1):NCPUE_S1_2], 
RESID1[(NCPUE_S1_1+NCPUE_S1_MISS+1):NCPUE_S1_2]) 

     

    RSS2 <- inprod(RESID2[(NCPUE_S1_2):NCPUE_S1_3], 
RESID2[(NCPUE_S1_2):NCPUE_S1_3]) 

     

    RSS3 <- inprod(RESID3,RESID3) 

 

    RMSE1 <- sqrt(RSS1/(NCPUE_S1_2-NCPUE_S1_MISS)) 

     

    RMSE2 <- sqrt(RSS2/(NCPUE_S1_3-(NCPUE_S1_2-1))) 
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    RMSE3 <- sqrt(RSS3) 

     

    ############################################################### 

    # STOCK ASSESSMENT QUANTITIES OF INTEREST 

    ############################################################### 

     

    # Compute exploitation rate and biomass time series 

    #(QOI1)######################################################### 

    # MHI 1949-2015 P[1:NTIME] 

    for (i in 1:NTIME) { 

    B[i] <- P[i]*K 

    H[i] <- min(Catch[i]/B[i],0.999) 

    F[i] <- -log(1-H[i]) 

    }   

     

    # Compute MSY reference points 

    #(QOI2)######################################################### 

    BMSY <- K*pow(M+1.0,(-1.0/M)) 

    MSY <- r*BMSY*(1.0-(1.0/(M+1.0))) 

    HMSY <- min(r*(1.0-(1.0/(M+1.0))),0.999) 

    PMSY <- BMSY/K 

    FMSY <- -log(1-HMSY) 

    CPUE_MSY <- q2*BMSY 

     

    # Compute relative biomass and harvest, BSTATUS and HSTATUS 
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    #(QOI3)######################################################### 

    for (i in 1:NTIME) { 

    BSTATUS[i] <- B[i]/BMSY 

    HSTATUS[i] <- H[i]/HMSY 

    production[i] <- r*B[i]*(1-pow(P[i],M)) 

    } 

     

    # Compute probabilities of H[i] > HMSY, B[i] < BMSY,  

    # and B[i] < pLIM_B*BMSY, a minimum biomass limit 

    #(QOI4)########################################################## 

    for (i in 1:NTIME) { 

    pOFL_H[i] <- step(HSTATUS[i] - 1.0) 

    pBMSY_B[i] <- step(1.0 - BSTATUS[i]) 

    pOFL_B[i] <- step(pLIM_B - BSTATUS[i]) 

    } 

     

    ######################## 

    } ## END OF WinBUGS MODEL 

     

    ",fill=TRUE) 

sink()      # ends the last diversion 

 

 

 

################################################################### 
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# END OF CODE/MODEL 

################################################################### 

 

 

#######################################################################  ------ 

############ Create list of inits for WinBUGS use #####################                                 

####################################################################### 

 

inits <- list(    # create inits list of functions 

   

  ## Initial Condition 1  

   

  list( 

     

    Catch=c(0.45229851,0.44030925,0.48110292,0.45978309, 

            0.38915946,0.396672678,0.31280049,0.41497623, 

            0.56982267,0.35820333,0.30107439,0.27311751, 

            0.22088799,0.29168964,0.35766153,0.35814915, 

            0.40078881,0.27636057,0.46898982,0.32923251, 

            0.33260328,0.2697003,0.22880988,0.45609498, 

            0.36128772,0.52358391,0.44963208,0.40785543, 

            0.41149323,0.59846454,0.56506257,0.58459059, 

            0.76381029,0.68780736,0.89200791,0.61428897, 

            0.76187142,0.67085289,0.99916047,1.16362773, 

            1.19060937,0.8121969,0.52433856,0.66302775, 
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            0.51723711,0.67092642,0.7287597,0.540900573, 

            0.621104737,0.552321266,0.363870819,0.553269843, 

            0.393816339,0.307659835,0.379168109,0.259142954, 

            0.310034053,0.214235901,0.274423218,0.285705387, 

            0.393775074,0.313008597,0.440775918,0.312457811, 

            0.285182311,0.477448617,0.459193066), 

     

    Catch2016 = 0.42, 

     

    r=0.05, 

     

    P=c(rep(0.5,32), rep(0.5, NTIME-32)),  

     

    P2016=0.5, 

    P2017=0.5, 

     

    K=30.0, 

     

    M=1.0, 

     

    q1=10.0, 

    q2=10.0,  

    rad=20.2, 

     

    isigma2=100, 
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    itau2_1=100, 

    itau2_2=100 

     

  )##END init 1 

   

  ## Initial Condition 2  

   

  ,list( 

     

    Catch=c(0.45229851,0.44030925,0.48110292,0.45978309, 

            0.38915946,0.396672678,0.31280049,0.41497623, 

            0.56982267,0.35820333,0.30107439,0.27311751, 

            0.22088799,0.29168964,0.35766153,0.35814915, 

            0.40078881,0.27636057,0.46898982,0.32923251, 

            0.33260328,0.2697003,0.22880988,0.45609498, 

            0.36128772,0.52358391,0.44963208,0.40785543, 

            0.41149323,0.59846454,0.56506257,0.58459059, 

            0.76381029,0.68780736,0.89200791,0.61428897, 

            0.76187142,0.67085289,0.99916047,1.16362773, 

            1.19060937,0.8121969,0.52433856,0.66302775, 

            0.51723711,0.67092642,0.7287597,0.540900573, 

            0.621104737,0.552321266,0.363870819,0.553269843, 

            0.393816339,0.307659835,0.379168109,0.259142954, 

            0.310034053,0.214235901,0.274423218,0.285705387, 
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            0.393775074,0.313008597,0.440775918,0.312457811, 

            0.285182311,0.477448617,0.459193066), 

     

    Catch2016 = 0.42, 

     

    r=0.15, 

     

    P=c(rep(0.5,32), rep(0.5, NTIME-32)),  

     

    P2016=0.5, 

    P2017=0.5, 

     

    K=10.0, 

     

    M=1.0, 

     

    q1=10.0, 

    q2=10.0,  

    rad=20.2, 

     

    isigma2=100, 

     

    itau2_1=100, 

    itau2_2=100 
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  )##END init 2 

   

  ## Initial Condition 3  

   

  ,list( 

     

    Catch=c(0.45229851,0.44030925,0.48110292,0.45978309, 

            0.38915946,0.396672678,0.31280049,0.41497623, 

            0.56982267,0.35820333,0.30107439,0.27311751, 

            0.22088799,0.29168964,0.35766153,0.35814915, 

            0.40078881,0.27636057,0.46898982,0.32923251, 

            0.33260328,0.2697003,0.22880988,0.45609498, 

            0.36128772,0.52358391,0.44963208,0.40785543, 

            0.41149323,0.59846454,0.56506257,0.58459059, 

            0.76381029,0.68780736,0.89200791,0.61428897, 

            0.76187142,0.67085289,0.99916047,1.16362773, 

            1.19060937,0.8121969,0.52433856,0.66302775, 

            0.51723711,0.67092642,0.7287597,0.540900573, 

            0.621104737,0.552321266,0.363870819,0.553269843, 

            0.393816339,0.307659835,0.379168109,0.259142954, 

            0.310034053,0.214235901,0.274423218,0.285705387, 

            0.393775074,0.313008597,0.440775918,0.312457811, 

            0.285182311,0.477448617,0.459193066), 

     

    Catch2016 = 0.42, 
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    r=0.10, 

     

    P=c(rep(0.5,32), rep(0.5, NTIME-32)),  

     

    P2016=0.5, 

    P2017=0.5, 

     

    K=20.0, 

     

    M=1.0, 

     

    q1=10.0, 

    q2=10.0,  

    rad=20.2, 

     

    isigma2=100, 

     

    itau2_1=100, 

    itau2_2=100 

     

  )##END init 3 

)  ## close list of functions 

 

##### end initials function ############################################ 
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######################################################################## 

 

 

## Parameters to estimate 

######################################################################## 

 

params <- c( 

   

  ## model parameters ## 

  "K","r","M", "q1","q2","sigma2","tau2_1","tau2_2",”q3”,”rad”, 

   

  ## time-series derived variables ## 

  "P","B","H","PRED_CPUE","PRED_CPUE2","PRED_Bio2017", 

   

  ## management metrics ## 

  "MSY","PMSY","BMSY","HMSY","BSTATUS","HSTATUS","FMSY",  

  "pOFL_H","pOFL_B","pBMSY_B",                                                                  

   

  ## statistics and diagnoses ## 

  "STD_LOG_RESID1", "STD_LOG_RESID2", "STD_LOG_RESID3",  

  "LOG_RESID1", "LOG_RESID2", "LOG_RESID3","RESID1", "RESID2", "RESID3", 

  "LOG_RSS1", "LOG_RSS2", "LOG_RSS3", "LOG_RMSE1", "LOG_RMSE2", 

  "LOG_RMSE3","RSS1", "RSS2", "RSS3", "RMSE1", "RMSE2", "RMSE3" 

   

) 
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begin_time = proc.time()[3]   

nc <- length(inits)    # Number of Markov chains, default is 3  

###################################################################  

# Start Gibbs sampling, cycle through the initials 

 

bugs(win.data,inits,params,model_code,n.chains=nc,n.iter=ni,n.burnin=nb,n.thin=nt, 

     debug=FALSE,codaPkg=FALSE,bugs.directory="c:/Program Files/WinBUGS14/", 

     working.directory=src.dir) 

 

################################################################### 

end_time = proc.time()[3] 

print(paste("RUN_COST = ",(end_time-begin_time)/60," mins",sep="")) 

####################################################################### 
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Appendix D. R code that calculates the standardized CPUE index from the final 
event-based dataset for Deep 7 in the main Hawaiian Islands during the early 
(1948-2003) and recent (2003-2015) time periods. 

############################################################## 

#Code to take event-based dataset and standardize based on best-fit model selection for the  

#early and late time periods.  

#M Kapur & B Langseth "17 Feb - 01 Mar 2017" 

############################################################# 

 

library(ggplot2) 

library(GGally) 

library(lubridate) 

library(Rmisc) 

 

raw.data = read.csv("D:\\File 
path\\Finalized_tripCPUE_dataset_forStandardization.csv",header=T) 

 

## Fix up wind parameters 

## convert to 360-degree circle, arctan in radians 

windrad = with(raw.data,atan2(ydir,xdir)) 

## convert to degrees  

raw.data$winddeg = (windrad*180)/pi 

## assign negatives 

raw.data$winddeg = ifelse(raw.data$winddeg < 0, raw.data$winddeg + 360, raw.data$winddeg) 

## change to compass directions; 0 corresponds to the positive X axis which would be wind 
blowing FROM the west 
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raw.data$winddir = cut(raw.data$winddeg, breaks = seq(0,360,45), labels = 
c("W","NW","N","NE","E","SE","S","SW")) 

 

## Cut Area Polygons 

raw.data$region = cut(raw.data$area, breaks = c(99,300,400,500,20000), labels = c("BIG 
ISLAND","MAUI NUI","OAHU",'KAUAI-NIIHAU')) 

 

## save the new one with special variables 

write.csv(raw.data, "D:\\File path\\tripCPUE_reformat_noscale.csv", row.names = F) 

 

 

############################################################## 

## A script to centralize data cleanup & time periods for use in D7 CPUE standardization 

## and to take best-fit models, and  generate CPUE index for use in assessment model for both 
#time periods. 

############################################################# 

 

rm(list=ls()) 

library(lubridate) 

library(plyr) 

library(dplyr) 

library(ggplot2) 

library(lme4) 

require(Rmisc) 

 

df = read.csv("D:\\File path\\tripCPUE_reformat_noscale.csv",header=T) 
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df$FYEAR = as.factor(df$FYEAR) 

df$qtr = as.factor(df$qtr) 

df$area = as.factor(df$area) 

df$log_cum_exp = log(df$cum_exp) 

df$sqrt_uku_lbs = sqrt(df$uku_lbs) 

print('reformatted predictors') 

df$fisher = as.character(df$fisher) 

df$fisher[df$FYEAR == '1976'] <-'1976FISHER' 

print('made dummy variable for 1976 FISHER') 

 

#' for binomial -- change positive catches into zeros.  

#' be sure to classify as a factor otherwise it may interpret as proportion 

df$bin.catch = as.factor(ifelse(df$d7catch > 0, 1, 0)) 

 

## Manipulate time periods 

#' Assuming FYEAR has been properly assigned (based on Fishing, not Calendar year).  

#' The main splits are designated tp1 and tp2 

df.tp1 = subset(df, FYEAR %in% c(1948:2003)) 

df.tp2 = subset(df, FYEAR %in% c(2003:2015)) 

 

## use this to drop Jul - Oct 2002 from latter time periodstr 

## first convert FISHED to date format 

df.tp2$FISHED = lubridate::ymd(df.tp2$FISHED) 

## extract month 
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df.tp2$FISHEDMONTH = month(df.tp2$FISHED) 

## id and drop Jul - Oct (7 - 10) of year 2002 

df.tp2.0 = subset(df.tp2, !(FISHEDMONTH %in% 7:9 & FYEAR == 2003)) 

 

## use this to drop Oct-Jun of FYEAR 2003 from first time period 

df.tp1$FISHEDMONTH = month(df.tp1$FISHED) 

df.tp1.0 = subset(df.tp1, !(FYEAR == 2003 & FISHEDMONTH %in% c(10:12,1:6))) 

 

## FINAL TIME PERIODS FOR MODELING PURPOSES 

TP1 = df.tp1.0 

TP2 = df.tp2.0 

print('split time periods ') 

TP2 = TP2[complete.cases(TP2[,c(13:17)]),] 

print('selected complete cases only') 

 

#Load the best-fit models 

TP1.B.best = glm(bin.catch~FYEAR + area + qtr + log_cum_exp + area:qtr, family = binomial, 
data = TP1, na.action = na.exclude) 

TP1.RLN.best = lmer(log(cpue) ~ (1|fisher) + FYEAR + area + qtr + sqrt_uku_lbs + 
log_cum_exp + area:qtr, data = TP1[TP1$cpue>0,], REML=T, na.action = na.exclude) 

TP2.B.best = glm(bin.catch ~ FYEAR + sqrt_uku_lbs + area + qtr + area:qtr + speed, family = 
binomial, data = TP2, na.action = na.exclude) 
TP2.RLN.best = lmer(log(cpue) ~ (1|fisher) + FYEAR + area + sqrt_uku_lbs + speed + qtr + 
area:FYEAR + log_cum_exp, data =TP2[TP2$cpue>0,], REML=T, na.action = na.exclude) 
 

# Positive Process 

## Extract predicted values for Positive process ("p") and bind to YEAR (for aggregating) 
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TP1p = data.frame('LOGCPUE' = predict(TP1.RLN.best), 'FYEAR' = 
TP1[TP1$cpue>0,][,'FYEAR']) 

TP2p = data.frame('LOGCPUE' = predict(TP2.RLN.best),'FYEAR' 
=TP2[TP2$cpue>0,][,'FYEAR']) 

 

## Backtransform positive process using dispersion from each model following Brian's STM 
#standardization and that from Brodziak and Walsh (2013) 

TP1p$trans=exp(TP1p$LOGCPUE + ((summary(TP1.RLN.best)$sigma^2)/2)) 

TP2p$trans=exp(TP2p$LOGCPUE + ((summary(TP2.RLN.best)$sigma^2)/2)) 

 

# Bernoulli process 

## Extract predicted values for Bernoulli process ("b")- be sure to use type = 'response' which 
#provides the probability of having a non zero tow (Stefansson 1996) 

TP1b = data.frame('BIN.CATCH' = predict(TP1.B.best, type = 'response'),'FYEAR' = 
TP1[,'FYEAR']) 

TP2b = data.frame('BIN.CATCH' = predict(TP2.B.best, type = 'response'),'FYEAR' = 
TP2[,'FYEAR']) 

 

## Use aggregate ('a') to get means and sd for each yearfor the positive process (remember sd2 is 
#var) 

TP1pa = aggregate(trans ~ FYEAR, TP1p, function(x) c(mean = mean(x), sd = sd(x), var = 
var(x))) 

TP2pa = aggregate(trans ~ FYEAR, TP2p, function(x) c(mean = mean(x), sd = sd(x), var = 
var(x))) 

 

## Use aggregate ('a') to get means, sd and variance for each year for the bernoulli process. Var 
#for bernoulli is not standard. Don't transform after this. 

TP1ba = aggregate(BIN.CATCH ~ FYEAR, data = TP1b,  FUN = function(x) c(mean = 
mean(x), sd = sd(x), var = var(x))) 

TP2ba = aggregate(BIN.CATCH ~ FYEAR, data = TP2b,  FUN = function(x) c(mean = 
mean(x), sd = sd(x), var = var(x))) 
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# Index generation 

## Multiply each estimate together and calculate the variance according to Brodziak and Walsh 
#(2013) but ultimately following Goodman (1960)- no bother with the covariance as it is set to 0. 

varI=function(pmean,pvar,bmean,bvar){ 

  index_totvar = bvar*pvar + bvar*(pmean^2) + pvar*(bmean^2)  } 

 

TP1I = data.frame('FYEAR' = TP1ba[,'FYEAR'], 'INDEX.EST' = TP1ba$BIN.CATCH[,'mean'] 
* TP1pa$trans[,'mean'],'VARIANCE.FORM' = 
varI(TP1pa$trans[,'mean'],TP1pa$trans[,'var'],TP1ba$BIN.CATCH[,'mean'],TP1ba$BIN.CATC
H[,'var']),'VARIANCE.ADDITIVE'=TP1pa$trans[,'var']+TP1ba$BIN.CATCH[,'var']) 

TP1I$MODEL = 'TP1' 

 

TP2I = data.frame('FYEAR' = TP2ba[,'FYEAR'], 'INDEX.EST' = TP2ba$BIN.CATCH[,'mean'] 
* TP2pa$trans[,'mean'], 'VARIANCE.FORM' = 
varI(TP2pa$trans[,'mean'],TP2pa$trans[,'var'],TP2ba$BIN.CATCH[,'mean'],TP2ba$BIN.CATC
H[,'var']),'VARIANCE.ADDITIVE'=TP2pa$trans[,'var']+TP2ba$BIN.CATCH[,'var']) 

TP2I$MODEL = 'TP2' 

##set up full df 

full.df = rbind(TP1I,TP2I) 

full.df$SD = sqrt(full.df$VARIANCE.FORM) 

full.df$N=c(table(TP1$FYEAR)[-c(57:68)],table(TP2$FYEAR)[-c(1:55)]) 

full.df$SE=full.df$SD/sqrt(full.df$N) 

full.df$CV_mean=full.df$SE/full.df$INDEX.EST 

full.df$relCV=c(full.df$CV_mean[-c(57:69)]/min(full.df$CV_mean)[-
c(57:69)],full.df$CV_mean[-c(1:56)]/min(full.df$CV_mean[-c(1:56)])) 

head(full.df) 

write.csv(full.df,'D:\\File name\\Finalized_stdindex_0822_REMLF.csv', row.names = F) 
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